Autologous vein grafts used as aortocoronary bypasses are often prone to intimal hyperplasia, which results in stenosis and occlusion of the vein. The aim of this study was to prevent intimal hyperplasia using a newly developed perivascular system with sustained release of sirolimus. This system of controlled drug release consists of a polyester mesh coated with a copolymer of L-lactic acid and ε -caprolactone that releases sirolimus. The mesh is intended for wrapping around the vein graft during surgery. The mesh releasing sirolimus was implanted in periadventitial position onto arteria carotis communis of rabbits, and neointimal hyperplasia was then assessed. We found that implanted sirolimus-releasing meshes reduced intima thickness by 47±10 % compared to a vein graft after 3 weeks. The pure polyester mesh decreased vein intima thickness by 35±9 %. Thus, our periadventitial system for controlled release of sirolimus prevented the develo pment of intimal hyperplasia in autologous vein grafts in vivo in rabbits. A perivascularly applied mesh releasing sirolimus is a promising device for preventing stenosis of autologous vein grafts., I. Skalský ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate cross linking agents., L. Bačáková, K. Novotná, M. Pařízek., and Obsahuje bibliografii a bibliografické odkazy
This review summarizes recent trends in the construction of bioartificial vascular replacements, i.e. hybrid grafts containing synthetic polymeric scaffolds and cells. In these advanced replacements, vascular smooth muscle cells (VSMC) should be considered as a physiological component, although it is known that activation of the migration and proliferation of VSMC plays an important role in the onset and development of vascular diseases, and also in re stenosis of currently used vascular grafts. Therefore, in novel bioartificial vascular grafts, VSMCs should be kept in quiescent mature contractile phenotype. This can be achieved by (1) appropriate physical and chemical properties of the material, such as its chemical composition, polarity, wettability, surface roughness and topography, electrical charge and conductivity, functionalization with biomolecules and mechanical properties, (2) appropriate cell culture conditions, such as composition of cell culture media and dynamic load, namely cyclic strain, and (3) the presence of a confluent, mature, semipermeable, non-thrombogenic and non-immunogenic endothelial cell (EC) barrier, covering the luminal surface of the graft and separating the VSMCs from the blood. Both VSMCs and ECs can also be differentiated from stem and progenitor cells of various sources. In the case of degradable scaffolds, the material will gradually be removed by the cells and will be replaced by their own new extracellular matrix. Thus, the material component in advanced blood vessel substitute s acts as a temporary scaffold that promotes regeneration of the damaged vascular tissue., M. Pařízek, K. Novotná, L. Bačáková., and Obsahuje bibliografii a bibliografické odkazy