To investigate the relationship between development of obesity and the small intestinal functions two experimental models of male Wistar rats were used in the present work: 1) early postnatally overfed rats, nursed from birth to weaning in small litters (SL, 4 pups/nest), and 2) neonatally monosodium glutamate treated rats (MSG 2 mg/g b.w. administered s.c. for 4 days after birth) submitted to the same early nutritional manipulation. After weaning, all animals had free access to a standard pellet diet and at 40 and 80 days of age their body weight, body fat content and food consumption as well as changes of the brush-border-bound duodenal and jejunal alkaline phosphatase (AP) activity were compared with parameters of the offsprings raised under normal feeding conditions (NL, 8 pups/nest). At 40 and 80 days of age the postnatally overfed pups from SL nests became heavier, displayed a significantly increased epididymal plus retroperitoneal fat pad weight (P<0.01) and significantly higher AP activity in both segments of the small intestine (P<0.01) in comparison with rats nursed in NL nests, although their mean daily food intake did not differ from that of non-obese rats during the postweaning periods examined. In contrast, the same treatment of MSG rats had only a small effect on late appearance of obesity, i.e. in early postnatally overfed and normally fed MSG rats a similar pattern of body weight, food intake, adiposity and AP activity was found after weaning. The effect of MSG-treatment was also accompanied by the appearance of normophagia, hypophagia and stunted growth on day 40 and day 80, respectively. Moreover, the size of fat depots and the increase of brush-border-bound AP activity in MSG rats belonging to the SL and NL groups was quantitatively similar to the values size of these parameters observed in SL obese rats subjected to early postnatal overnutrition. These results indicate that postnatal nutritional experience (overnutrition) may represent a predisposing factor in control rats from small litters for the development of obesity in later life. Permanently increased small intestinal AP activity observed after weaning in both models of obesity when hyperphagia is not present suggest that these functional changes and associated alterations in food digestion could be a component of regulatory mechanisms contributing to the maintenance of their elevated body fat weight.
The purpose of this study was to follow up the changes in antioxidative adaptive mechanisms induced by various periods of small intestinal ischemia in Wistar rats. The superior mesenteric artery was occluded for 15, 30, 45, 60 and 90 min. After the respective ischemic intervals, a reperfusion was set for 120 min. Samples of the serum and intestinal mucosa were taken at the end of ischemia or at the end of reperfusion. Total radical-trapping antioxidant parameter (TRAP) of the serum and the oxidative burst of neutrophils were evaluated using luminol-enhanced chemiluminescence. Individual antioxidants in the serum and the concentration of thiobarbituric acid reactive substances (TBARs) in both serum and intestinal mucosa were measured spectrophotometrically. Increased activation of circulating neutrophils was found after the reperfusion irrespective of the duration of ischemia. TRAP of the serum was increased at the end of the ischemia lasting from 30 to 90 min. This effect was further enhanced by the subsequent reperfusion period. Ascorbate and urate contributed considerably to the TRAP value especially after reperfusion following 60 and 90 min of ischemia. On the other hand, no significant changes in albumin and bilirubin serum concentrations were observed. Contrary to the mobilized antioxidative mechanisms, increased lipid peroxidation was observed in both serum and mucosa samples.