The use of electromagnetic (EM) soil moisture probes is proliferating rapidly, in two broad domains: in field and laboratory research; and in strongly practical applications such as irrigation scheduling in farms or horticultural enterprises, and hydrological monitoring. Numerous commercial EM probes are available for measurement of volumetric water content (θv), spanning a range of measurement principles, and of probe dimensions and sensing volumes. However probe calibration (i.e. the relationship of actual θv to probe electrical output) can shift, often substantially, with variations in parameters such as soil texture, organic matter content, wetness range, electrical conductivity and temperature. Hence a single-valued, manufacturer-supplied calibration function is often inadequate, forcing the user to seek an application-specific calibration. The purpose of this paper is to describe systematic procedures which probe users can use to check or re-determine the calibration of their selected probe(s). Given the wide diversity of operating principles and designs of commercially-available EM probes, we illustrate these procedures with results from our own calibrations of five different short probes (length of 5 to 20 cm). Users are strongly recommended to undertake such calibration checks, which provide both a) pre-use experience, and b) more reliable in-use data. and Používanie elektromagnetických (EM) snímačov vlhkosti pôdy sa rýchlo rozširuje tak v terénnom výskume, ako aj v laboratóriu. Sú používané v praktických aplikáciách ako je riadenie závlah na farmách a záhradách, ako aj v hydrologickom monitoringu. Pre meranie vlhkosti pôdy (θv) sú dostupné početné typy komerčných EM snímačov, založených na viacerých princípoch merania a snímače majú rozdielnu veľkosť snímaných objemov pôdy. Kalibračné krivky takýchto snímačov (t.j. závislosti medzi reálnou vlhkosťou pôdy θv a elektrickým výstupom snímača) sa môžu posúvať - niekedy podstatne - a to v závislosti od rozdielnych parametrov pôdy, ako je jej textúra, obsah organických látok, rozsah vlhkostí, elektrická vodivosť a teplota. Z toho vyplýva, že jednoznačná kalibračná krivka, dodávaná výrobcom je často neadekvátna, čo núti užívateľa snímač kalibrovať v špecifických podmienkach. Cieľom tohto príspevku je opísať procedúry, ktoré môžu byť použité užívateľmi pri rekalibrácii vybraných typov snímačov. Berúc do úvahy širokú paletu princípov EM snímačov, ilustrujeme tieto procedúry výsledkami vlastných kalibračných testov na piatich typoch krátkych snímačov (dĺžka od 5 do 20 cm). Užívateľom odporúčame rekalibráciu komerčných snímačov, ktorými získajú predbežné skúsenosti a spoľahlivejšie výsledky pri meraní vlhkosti pôdy.
Water erosion has been recognized as a major soil degradation process worldwide. This is of special relevance in the semi-arid areas of South Bulgaria with long periods of drought along with severe rainfall events. The main objective of this study was to evaluate the applicability of Bromus innermis L. and Lotus corniculatus L. for soil protection purposes under different site conditions. The site parameters considered were slope, fertilization and a range of soil physical parameters. The plant parameters were canopy cover, biomass, and root morphological characteristics. The experiment includes plots without and with eleven rates of NPK fertilization on gentle (6o ) and steep slopes (12o ). It was observed that the effect of fertilization on shoot and root growth was stronger on the gentle than on the steep slopes. The biomass accumulation was more sensitive to N than the PK fertilizer applications. The increase of the root density with increasing fertilization rates was more pronounced for the mass than for length or surface area. A significant effect on root diameter was found only for the variants with the highest N application. Treatments with the highest root mass density on both slopes showed the greatest potential for reducing erosion.
Soil compaction in agricultural areas inhibits plant root growth through increased mechanical resistance, altered water and nutrient supply. The main objective of this study was to evaluate spatial distribution of roots and its effect on water uptake of maize grown on field with subsoil compaction. Two treatments were examined: complex melioration consisting of deep loosening in combination with drainage and control without applied meliorations. Root observations were conducted on vertical and superposed horizontal planes covered with a 2 cm grid short after silking. Root distributions expressed as index of density and/or dry mass density were estimated down to 1m soil depth and with a distance to a plant base. For analysis of root distribution pattern on the horizontal planes, a Variance to Mean Ratio (VMR) test was applied. Soil water monitoring were conducted during the vegetation period. On the vertical planes, root densities were similar in the topsoil of both treatments, but the results were significantly higher in the subsoil of the meliorated one showing deeper allocation of root density. In contrast, the control had more squares with lots of roots (i.e. higher indexes) just at the top- subsoil boundary owing to bunching of roots in macropores. The horizontal planes in the control generally consisted larger areas without visible roots and thus great distances for water and nutrient transmission, especially in the subsoil. The estimated VMR also pointed toward different levels of root clustering. Consequently, an inhibited water extraction from the subsoil in the control, a delay in crop ontogenesis and a less biomass production was established during the observed period. and Zhutnenie poľnohospodárskej pôdy bráni rastu koreňov; je to spôsobené zvýšeným mechanickým odporom pôdy, a zníženým prítokom vody a živín. Cieľom tejto štúdie je zhodnotenie priestorovej variability koreňov, ich vplyvu na odber vody koreňmi kukurice na poli so zhutnenou podorničnou vrstvou. Boli hodnotené dva spôsoby obrábania: komplexná meliorácia pozostávajúca z hlbokého podrývania v kombinácii s drenážou a obrábanie (kontrola) bez melioračných zásahov. Identifikácia rozdelenia koreňov bola vykonaná vo vertikálnych a horizontálnych rovinách s 2-cm sieťou, krátko po metaní. Rozdelenie koreňov bolo vyjadrené ako index hustoty alebo ako hustota suchej biomasy koreňov do hĺbky 1 m; v horizontálnom smere až k susedným rastlinám. Bol použitý test ''Variance to Mean Ratio'' (VMR) na určenie rozdelenia koreňov v horizontálnom smere počas vegetačného obdobia. Hustota koreňov vrchnej vrstvy pôdy vo vertikálnej rovine bola podobná pre obidve varianty, ale pre meliorovanú pôdu boli hodnoty hustoty koreňov v podloží podstatne vyššie a korene zasahovali hlbšie. Ako protiklad, na kontrolnom pozemku bolo viac štvorcov s mnohými koreňmi (t.j. vyššie indexy) práve na hranici orničnej a podorničnej vrstvy, pre enormný rast koreňov v makropóroch. V horizontálnej rovine tento kontrolný pozemok obsahoval veľké oblasti bez viditeľných koreňov, a to znamená veľké vzdialenosti pre prenos vody a živín v podorničnej vrstve. Výsledky aplikácie VMR naznačujú tiež rozdielne úrovne zhlukov koreňov. Z toho vyplýva znížený odber vody koreňmi rastlín na kontrolnom pozemku, ako aj pomalšia ontogenéza a nižšia produkcia biomasy, ktorá bola identifikovaná počas sledovaného obdobia.