A novel rriethod that allows us to study the emergence of modularity
for genotype-phenotype mapping in the course of Darwinian evolution is described. The evolutionary method used is based on cornposite chromosomes with two parts; One is a binary genotype whereas the other corresponds to the mapping of genes onto phenotype characters. For such generalized chromosomes the modularity is determined by the following intuitive way: The genes are divided into two subgroups; simultaneously with this decomposition also an accompanied decomposition of the set of phenotype characters is defined. We expect that for chromosomes with rnodular structures the genes frorn one group are rnapped onto characters from the respective group, an appearance of “crosslink” mappings is rnaximally suppressed. A fundamental question for the whole evolutionary biology (and also for evolutioriary algorithms and connectionist cognitive science) is the nature of mechanism of evolutionary emergence of modular structures. An idea of effective fitness is used in the presented explanatory simulations. It is based on the rnetaphor of Hinton and Nowlan theory of the Baldwin eífect, and was ušed as an effective idea for generalization of evolutionary algorithms. The effective fitness reflects not only a static concept of the phenotype, but also its ability to be adapted (learned) within a neighborhood of the respective chromosome. The chromosomes determined in the presented paper inay be understood as objects with the type of plasticity. The rnetaphor of the Baldwin effect (or effective fitness) applied to evolutionary algorithms offers an evolutionary tool that is potentially able to produce the emergence of modularity.
V práci je prezentovaná moderná paradigma darvinovskej evolúcie, ktorá ju chápe ako univerzálny optimalizačný algoritmus, aplikovateľný nielen v biologických vedách, ale aj v roznych oblastiach tak exaktných, ako aj sociálnych a behaviorálnych vied., Vladimír Kvasnička, Jiří Pospíchal., and Obsahuje bibliografii
Holographic reduced representation is based on a suitable distributive coding of structured information in conceptual vectors, whose elements satisfy normal distribution N(0,1/n). The existing applications of this approach concern various models of associative memory that exploit a simple algebraic operation of the scalar product of distributed representations to measure an overlap between two structured concepts. We have described here a method that uses this representation to model a similarity between different concepts and an inference process based on the rules modus ponens and modus tollens.
This paper discusses a simple logical approach to solving Sudoku puzzles, which may be interpreted as a mental model of the puzzle. The model employs an auxiliary matrix 9x9, which is formed from the matrix specifying initial given values of the puzzle in such a way that its empty squares are filled by lists of candidate values. These lists are determined by initial values together with the puzzle constraints: each column/row/subarea 3x3 is occupied by integers 1, 2, ..., 9 appearing only once. Applying the simple logical rules such as if..., then..., this auxiliary matrix is subsequently simplified in such a way that we reduce the set of alternative possibilities, where in a final stage each position of auxiliary matrix is occupied just by one integer from {1,2,...,9} and the resulting matrix satisfies the above mentioned constraints. The logical rules used may be hierarchically arranged in a sequence of increasing complexity of their preceding parts. Therefore, Sudoku puzzles may be classified according to the complexity of their solution; from the simplest puzzles to the most complex by using the rules and a back-track search., V práci je diskutovaný jednoduchý logický prístup k riešeniu hry Sudoku, ktorý môže byť taktiež interpretovaný ako mentálny model tejto hry. Použitý model využíva pracovnú maticu 9x9, ktorá je vytvorená z matice špecifikujúcej počiatočnú pozíciu hry tak, že prázdne pozície sú zaplnené alternatívnymi možnosťami určenými z počiatočnej pozície pomocou podmienok tak, aby každý riadok/stĺpec/oblasť 3x3 obsahoval čísla 1, 2, ..., 9 prave raz. Použitím jednoduchých logických pravidiel typu if..., then... túto pracovnú maticu postupne zjednodušíme tak, že redukujeme výskyt alternatívnych možností, až v konečnej fáze úpravy matice v každej pozícii máme práve jedno číslo, pričom táto výsledná matica vyhovuje vyššie uvedeným podmienkam. Použité logické pravidlá pre zjednodušenie Sudoku môžu byť hierarchicky usporiadané podl'a rastúcej zložitosti ich podmienky (antecedentu). Potom hry Sudoku môžu byť klasifikované podl'a zložitosti ich riešenia; od jednoduchých hier až po vel'mi zložité (diabolské), kde je potrebné použiť pravidlá, ktoré vo svojich podmienkach obsahujú spätné prehl'adávanie pracovnej matice., Vladimír Kvasnička, Michal Cádrik., and Obsahuje bibliografii
A simple replication theory of coevolution of genes and memes is
proposed. A population composed of couples of genes and memes, the so-called m-genes, is subjected to Darwinian evolution. Three diíferent types of operations over m-genes are introduced: Replication (an m-gene is replicated with mutations onto an offspring m-gene), interaction (a memetic transfer from a donor to an acceptor), and extinction (an m-gene is eliminated). Computer simulations of the present model allow us to identify diíferent mechanisms of gene and meme coevolutions.
Simulated annealing construction of shortest (spanning/nonspanning
and closed/open) paths on generál connected graphs is discussed. A brief graphtheoretical analysis of the problem is given. A theorem has been proved that for connected graphs the shortest paths are semielementary, that is each edge on the path is visited at most twice in opposite directions. This observation considerably reduces the search space. Tasks may be further specified depending on whether the initial and terminal vertices are given or not. Similarly, in construction of shortest open paths a subtask is considered when the path must visit a prescribed subset of graph vertices. Illustrative calculations demonstrate that the proposed method results for incomplete graphs in the paths that are dosely related to optimal solutions.