A novel rriethod that allows us to study the emergence of modularity
for genotype-phenotype mapping in the course of Darwinian evolution is described. The evolutionary method used is based on cornposite chromosomes with two parts; One is a binary genotype whereas the other corresponds to the mapping of genes onto phenotype characters. For such generalized chromosomes the modularity is determined by the following intuitive way: The genes are divided into two subgroups; simultaneously with this decomposition also an accompanied decomposition of the set of phenotype characters is defined. We expect that for chromosomes with rnodular structures the genes frorn one group are rnapped onto characters from the respective group, an appearance of “crosslink” mappings is rnaximally suppressed. A fundamental question for the whole evolutionary biology (and also for evolutioriary algorithms and connectionist cognitive science) is the nature of mechanism of evolutionary emergence of modular structures. An idea of effective fitness is used in the presented explanatory simulations. It is based on the rnetaphor of Hinton and Nowlan theory of the Baldwin eífect, and was ušed as an effective idea for generalization of evolutionary algorithms. The effective fitness reflects not only a static concept of the phenotype, but also its ability to be adapted (learned) within a neighborhood of the respective chromosome. The chromosomes determined in the presented paper inay be understood as objects with the type of plasticity. The rnetaphor of the Baldwin effect (or effective fitness) applied to evolutionary algorithms offers an evolutionary tool that is potentially able to produce the emergence of modularity.
Herbivorous insects are often highly specialised, likely due to trade-offs in fitness on alternative host species. However, some pest insects are extremely adaptable and readily adopt novel hosts, sometimes causing rapid expansion of their host range as they spread from their original host and geographic origin. The genetic basis of this phenomenon is poorly understood, limiting our ability to predict or mitigate global insect pest outbreaks. We investigated the trajectory of early adaptation to novel hosts in a regionally-specialised global crop pest species (the cowpea seed beetle Callosobruchus maculatus). After experimentally-enforced dietary specialisation for nearly 300 generations, we measured changes in fitness over the first 5 generations of adaptation to 6 novel hosts. Of these, C. maculatus reproduced successfully on all but one, with reduced fitness observed on three hosts in the first generation. Loss of fitness was followed by very rapid, decelerating increases in fitness over the first 1-5 generations, resulting in comparable levels of population fitness to that observed on the original host after 5 generations. Heritability of fitness on novel hosts was high. Adaptation occurred primarily via changes in behavioural and phenological traits, and never via changes in offspring survival to adulthood, despite high heritability for this trait. These results suggest that C. maculatus possesses ample additive genetic variation for very rapid host shifts, despite a prolonged period of enforced specialization, and also suggest that some previously-inferred environmental maternal effects on host use may in part actually represent (rapidly) evolved changes. We highlight the need to examine in more detail the genetic architecture facilitating retention of high additive genetic variation for host shifts in extremely adaptable global crop pests., Thomas N. Price, Aoife Leonard, Lesley T. Lancaster., and Obsahuje bibliografii