Fluorescence spectroscopy at 77 K showed that the application of glucose lead to the depletion of phycobilisomes (PBS) and photosystems (PS) 2 and 1, and that PS2 was more sensitive to glucose than PS1. The application of sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, counteracted the effects of glucose. Sodium thiosulfate effectively protected photosynthetic apparatus, PS2, PS1, and PBS against glucose-induced depletion. Sodium thiosulfate showed strong capability to inhibit the disappearance of chlorophyll induced by glucose. At a relatively low concentration of glucose, the application of sodium thiosulfate can even be helpful for the assembly of photosynthetic apparatus. Hence the reactive oxygen species might be involved in the depletion of the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose. and Zeneng Wang ... [et al.].
The low chlorophyll b mutant of high yield rice had a lower light-harvesting complex 2 content than the wild type. The stability of oxygen evolution side of photosystem 2 was only slightly lower. A lower photon absorption rate and a stronger xanthophyll cycle capacity of this mutant led to a higher endurance to strong irradiance and a lower photoinhibition as compared with the wild type rice. and Xinbin Dai ... [et al.].