Fluorescence spectroscopy at 77 K showed that the application of glucose lead to the depletion of phycobilisomes (PBS) and photosystems (PS) 2 and 1, and that PS2 was more sensitive to glucose than PS1. The application of sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, counteracted the effects of glucose. Sodium thiosulfate effectively protected photosynthetic apparatus, PS2, PS1, and PBS against glucose-induced depletion. Sodium thiosulfate showed strong capability to inhibit the disappearance of chlorophyll induced by glucose. At a relatively low concentration of glucose, the application of sodium thiosulfate can even be helpful for the assembly of photosynthetic apparatus. Hence the reactive oxygen species might be involved in the depletion of the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose. and Zeneng Wang ... [et al.].
The model conjugates phycocyanin-allophycocyanin (C-PC-APC) and phycoerythrocyanin-phycocyanin-allophycocyanin (PEC-C-PC-APC) were synthesized by using a heterobifunctional coupling reagent N-succinimidyl-3-(2-pyridyldithio)propionate. The rod-core complex (αβ)6 PCLRC 27(αβ)3 APCLC 8.9 and phycobilisomes were separated from Anabaena variabilis. Energy transfer features for the conjugates and the complexes were compared. The absorption and fluorescence emission spectra indicated that the linker-peptides mediate interaction of phycobiliproteins and prompt energy transfer. The energy transfer in the conjugates was detected by fluorescence emission spectra and confirmed by the addition of dithiothreitol. The conjugates may be used as models for studying the energy transfer mechanism in phycobilisomes. and Jiquan Zhao ... [et al.].
Effect of UV-B (1.9 W m-2) alone or in combination with supplemental "white light". WL (20 W m-2) exposure was studied on the energy transfer process of intact phycobilisomes isolated from Spirulina platensis. Exposure of UV-B or supplemental irradiation induced a decrease in room temperature fluorescence intensity and caused a shift towards shorter wavelengths. The low temperature fluorescence measurements showed that UV-B impairs energy transfer from phycocyanin to allophycocyanin B and the extent of damage may be reduced by the exposure to supplemental WL. and S. Rajagopal, Prasanna Mohanty, S. D. S. Murthy.
Effects of ultraviolet-B (UV-B) irradiation on ultrastructure, total cellular protein, and PS2 proteins D1 and D2 of Synechococcus sp. PCC 7942 cells was studied. The scanning electron micrographs showed UV-B radiation induced bending of the cells. The transmission electron micrographs revealed disorganization and shift in thylakoid lamellar structure to one side of the cell. The cellular phycocyanin/chlorophyll ratio decreased with increasing UV-B treatment and due to this the colour of cells turned light-green. No apparent change in total cellular proteins was evident, but the contents of two major proteins of PS2, D1 and D2, showed decline due to UV-B irradiation, although to different extent. and Sanjay Chauhan, Ritu Pandey, Gauri S. Singhal.