Systolic blood pressure (SBP) changes control the cardiac interbeat intervals (IBI) duration via baroreflex. Conversely, SBP is influenced by IBI via non- baroreflex mechanisms. Both causal pathways (feedback - baroreflex and feedforward - non- baroreflex) form a closed loop of the SBP- IBI interaction. The aim of this study was to assess the age -related changes in the IBI - SBP interaction. We have non -invasively recorded resting beat -to- beat SBP and IBI in 335 healthy subjects of different age, ranging from 11 to 23 years. Using a linear autoregressive bivariate model we obtained gain (Gain SBP,IBI, used traditionally as baroreflex sensitivity) and coherence (CohSBP,IBI) of the SBP-IBI interaction and causal gain and coherence in baroreflex (Gain SBP → IBI , Coh SBP → IBI ) and coherence in non- baroreflex (CohIBI→SBP) directions separately. A non -linear approach was used for causal coupling indices evaluation (C SBP → IBI , C IBI → SBP ) quantifying the amount of information transferred between signals. We performed a correlation to age analysis of a ll measures. CohIBI→SBP and CIBI→SBP were higher than CohSBP→IBI and CSBP→IBI, respectively. Gain SBP,IBI increased and Coh SBP → IBI decreased with age. The coupling indices did not correlate with age. We conclude that the feedforward influence dominated at rest. The increase of Gain SBP,IBI with age was not found in the closed loop model. A decrease of Coh SBP → IBI could be related to a change in the cardiovascular control system complexity during maturation., J. Svačinová, M. Javorka, Z. Nováková, E. Závodná, B. Czippelová, N. Honzíková., and Obsahuje bibliografii
The aim of this study was to obtain a detailed analysis of the relationship between the finger arterial compliance C [ml/mm Hg] and the arterial transmural pressure Pt [mm Hg]. We constructed a dynamic plethysmograph enabling us to set up a constant pressure Pcss [mm Hg] and a superimposed fast pressure vibration in the finger cuff (equipped with a source of infra-red light and a photoelectric sensor for the measurement of arterial volume). Pcss could be set on the required time interval in steps ranging between 30 and 170 mm Hg, and on sinusoidal pressure oscillation with an amplitude Pca (2 mm Hg) and a frequency f (20, 25, 30, 35, 40 Hz). At the same time continuous blood pressure BP was measured on the adjacent finger (Portapres). We described the volume dependence of a unitary arterial length on the time-varying transmural pressure acting on the arterial wall (externally Pcss+Pca.sin(2πf), internally BP) by a second-order differential equation for volume. This equation was linearized within a small range of selected BP. In the next step, a Fourier transform was applied to obtain the frequency characteristic in analytic form of a complex linear combination of frequency functions. While series of oscillations [Pca, f] were applied for each Pcss, the corresponding response of the plethysmogram was measured. Amplitude spectra were obtained to estimate coefficients of the frequency characteristic by regression analysis. We determined the absolute value: elastance E, and its inverse value: compliance (C=1/E). Then, C=C(Pt) was acquired by applying sequences of oscillations for different Pcss (and thus Pt) by the above-described procedure. This methodology will be used for the study of finger arterial compliance in different physiological and pathological conditions., J. Moudr, J. Svačinová, E. Závodná, N. Honzíková., and Obsahuje bibliografii