Arterial compliance is an important cardiovascular parameter characterizing mechanical and structural properties of arteries and significantly influencing ventricular-arterial coupling. Decreased arterial compliance is associated with several physiological states and pathological processes. Furthermore, arterial compliance is influenced by other cardiovascular parameters even at short time scales. Today, there are numerous noninvasive methods of estimation arterial compliance in vivo introducing some level of confusion about selection of the best method for particular application and measurement setting. In this review, the most common noninvasive methods of arterial compliance estimation are summarized, discussed and categorized. Finally, interpretation of estimated arterial compliance in the context of other possible confounders is discussed.
Arterial compliance (C) is a complex parameter influencing ventricular-arterial coupling depending on structural (arterial wall remodeling) and functional (blood pressure, smooth muscles tone) changes. Based on Windkessel model, C can be calculated as the ratio of a time constant Tau characterizing diastolic blood pressure decay and total peripheral resistance (TPR). The aim of this study was to assess changes of C in the context of systolic arterial pressure (SAP) perturbations during four physiological states (supine rest, head-up tilt, supine recovery, mental arithmetic). In order to compare pressure independent changes of C a new index of C120 was proposed predicting C value at 120 mm Hg of SAP. Eighty-one healthy young subjects (48 f, average age 18.6 years) were examined. Hemodynamic parameters were measured beat-to-beat using volume-clamp photoplethysmographic method and impedance cardiography. We observed that C was strongly related to SAP values on the beat-to-beat time scale. Interestingly, C120 decreased significantly during stress phases. In conclusion, potential changes of SAP should be considered when measuring C. Arterial compliance changes in the opposite direction to TPR pointing towards influence of vascular tone changes on its value.
The aim of this study was to obtain a detailed analysis of the relationship between the finger arterial compliance C [ml/mm Hg] and the arterial transmural pressure Pt [mm Hg]. We constructed a dynamic plethysmograph enabling us to set up a constant pressure Pcss [mm Hg] and a superimposed fast pressure vibration in the finger cuff (equipped with a source of infra-red light and a photoelectric sensor for the measurement of arterial volume). Pcss could be set on the required time interval in steps ranging between 30 and 170 mm Hg, and on sinusoidal pressure oscillation with an amplitude Pca (2 mm Hg) and a frequency f (20, 25, 30, 35, 40 Hz). At the same time continuous blood pressure BP was measured on the adjacent finger (Portapres). We described the volume dependence of a unitary arterial length on the time-varying transmural pressure acting on the arterial wall (externally Pcss+Pca.sin(2πf), internally BP) by a second-order differential equation for volume. This equation was linearized within a small range of selected BP. In the next step, a Fourier transform was applied to obtain the frequency characteristic in analytic form of a complex linear combination of frequency functions. While series of oscillations [Pca, f] were applied for each Pcss, the corresponding response of the plethysmogram was measured. Amplitude spectra were obtained to estimate coefficients of the frequency characteristic by regression analysis. We determined the absolute value: elastance E, and its inverse value: compliance (C=1/E). Then, C=C(Pt) was acquired by applying sequences of oscillations for different Pcss (and thus Pt) by the above-described procedure. This methodology will be used for the study of finger arterial compliance in different physiological and pathological conditions., J. Moudr, J. Svačinová, E. Závodná, N. Honzíková., and Obsahuje bibliografii