Neurogenic pulmonary edema is a life-threatening complication, known for almost 100 years, but its etiopathogenesis is still not completely understood. This review summarizes current knowledge about the etiology and pathophysiology of neurogenic pulmonary edema. The roles of systemic sympathetic discharge, central nervous system trigger zones, intracranial pressure, inflammation and anesthesia in the etiopathogenesis of neurogenic pulmonary edema are considered in detail. The management of the patient and experimental models of neurogenic pulmonary edema are also discussed., J. Šedý, J. Zicha, J. Kuneš, P. Jendelová, E. Syková., and Obsahuje bibliografii a bibliografické odkazy
The development of neurogenic pulmonary edema (NPE) can be elicited by an immediate epidural balloon compression of the thoracic spinal cord. To evaluate whether a slower balloon inflation could prevent NPE development, we examined the extent of NPE in animals lesioned with a rapid (5 μl - 5 μl - 5 μl) or slow rate (3 μl - 2 μl - 2 μl - 2 μl - 2 μl - 2 μl - 2 μl) of balloon inflation. These groups were compared with the NPE model (immediate inflation to 15 μl) and with healthy controls. Slow balloon inflation prevented NPE development, whereas the pulmonary index and histology revealed a massive pulmonary edema in the group with a rapid rate of balloon inflation. Pulmonary edema was preceded by a considerable decrease in heart rate during the inflation procedure. Moreover, rapid inflation of balloon in spinal channel to either 5 μl or 10 μl did not cause NPE. Thus, a slow rate of balloon inflation in the thoracic epidural space prevents the development of neurogenic pulmonary edema, most likely due to the better adaptation of the organism to acute circulatory changes (rapid elevation of systemic blood pressure accompanied by profound heart rate reduction) during the longer balloon inflation period. It should be noted that spinal cord transection at the same level did not cause neurogenic pulmonary edema., J. Šedý ... [et al.]., and Obsahuje seznam literatury
Stem cells biology is one of the most frequent topic of physiological research of today. Spinal fusion represents common bone biology challenge. It is the indicator of osteoinduction and new bone formation on ectopic model. The purpose of this study was to establish a simple model of spinal fusion based on a rat model including verification of the possible use of titanium microplates with hydroxyapatite scaffold combined with human bone marrow-derived mesenchymal stem cells (MSCs). Spinous processes of two adjacent vertebrae were fixed in 15 Wistar rats. The space between bony vertebral arches and spinous processes was either filled with augmentation material only and covered with a resorbable collagen membrane (Group 1), or filled with augmentation material loaded with 5 × 10 6 MSCs and covered with a resorbable collagen membrane (Group 2). The rats were sacrificed 8 weeks after the surgery. Histology, histomorphometry and micro-CT were performed. The new model of interspinous fusion was safe, easy, inexpensive, with zero mortality. We did not detect any substantial pathological changes or tumor formation after graft implantation. We observed a nonsignificant effect on the formation of new bone tissue between Group 1 and Group 2. In the group with MSCs (Group 2) we described mino r inflamatory response which indicates the imunomodulational and antiinflamatory role of MSCs. In conclusion, this new model proved to be easy to use in small animals like rats., K. Klíma, V. Vaněček, A. Kohout, O. Jiroušek, R. Foltán, J. Štulík, V. Machoň, G. Pavlíková, P. Jendelová, E. Syková, J. Šedý., and Obsahuje bibliografii