Neurogenic pulmonary edema is a life-threatening complication, known for almost 100 years, but its etiopathogenesis is still not completely understood. This review summarizes current knowledge about the etiology and pathophysiology of neurogenic pulmonary edema. The roles of systemic sympathetic discharge, central nervous system trigger zones, intracranial pressure, inflammation and anesthesia in the etiopathogenesis of neurogenic pulmonary edema are considered in detail. The management of the patient and experimental models of neurogenic pulmonary edema are also discussed., J. Šedý, J. Zicha, J. Kuneš, P. Jendelová, E. Syková., and Obsahuje bibliografii a bibliografické odkazy
Neurogenic pulmonary edema (NPE), which is induced by acute spinal cord compression (SCC) unde r the mild (1.5 %) isoflurane anesthesia, is highly dependent on baroreflex-mediated bradycardia because a deeper (3 %) isoflurane anesthesia or atropine pretreatment comple tely abolished bradycardia occurrence and NPE development in rats subjected to SCC. The aim of the present study was to evaluate whether hypertension- associated impairment of baroreflex sensitivity might exert some protection against NPE developmen t in hypertensive animals. We therefore studied SCC-induced NPE development in two forms of experimental hypertension - spontaneously hypertensive rats (SHR) and salt hypertensive Dahl rats, which were reported to have reduced baroreflex sensitivity. SCC elicited NPE in both hypertensive models irrespective of their baroreflex sensitivity. It is evident that a moderate impairment of baroreflex sensitivity, which was demonstrated in salt hypertensive Dahl rats, does not exert sufficient protective effects against NPE development., J. Šedý, J. Kuneš, J. Zicha., and Obsahuje bibliografii a bibliografické odkazy
The development of neurogenic pulmonary edema (NPE) can be elicited by an immediate epidural balloon compression of the thoracic spinal cord. To evaluate whether a slower balloon inflation could prevent NPE development, we examined the extent of NPE in animals lesioned with a rapid (5 μl - 5 μl - 5 μl) or slow rate (3 μl - 2 μl - 2 μl - 2 μl - 2 μl - 2 μl - 2 μl) of balloon inflation. These groups were compared with the NPE model (immediate inflation to 15 μl) and with healthy controls. Slow balloon inflation prevented NPE development, whereas the pulmonary index and histology revealed a massive pulmonary edema in the group with a rapid rate of balloon inflation. Pulmonary edema was preceded by a considerable decrease in heart rate during the inflation procedure. Moreover, rapid inflation of balloon in spinal channel to either 5 μl or 10 μl did not cause NPE. Thus, a slow rate of balloon inflation in the thoracic epidural space prevents the development of neurogenic pulmonary edema, most likely due to the better adaptation of the organism to acute circulatory changes (rapid elevation of systemic blood pressure accompanied by profound heart rate reduction) during the longer balloon inflation period. It should be noted that spinal cord transection at the same level did not cause neurogenic pulmonary edema., J. Šedý ... [et al.]., and Obsahuje seznam literatury