Type 2 diabetes mellitus (T2DM) is associated with increased fracture risk; the underlying mechanism remains unexplained. This study aimed to investigate the relationships between body composition and bone and glucose metabolism in postmenopausal women wit h T2DM. Dual-energy X-ray absorptiometry was used to measure bone mineral density (BMD) and body composition. A total of 68 postme nopausal women with T2DM and 71 controls were eligible for the study. In contrast to normal BMD in T2DM, a similar prevalence of low-trauma fractures was observed in both groups. T2DM women had significantly higher Trunk fat% and A/G ratio and significantly lower Legs LM% and Legs FM%. Legs LM% was significantly lower in fractured T2DM group and negatively correlated with glycaem ia and HbA1c (p<0.01). Serum osteocalcin was significantly lower in T2DM and inversely correlated with FM%, Trunk FM% and A/G ratio (p<0.01) and positively correlated with Legs FM% and total LM% (p<0.05). In conclusion, abdominal obesity and decrease in mu scle mass may contribute to low bone formation in T2DM women. Further research is needed to unravel underlying pathophysiological mechanisms and to determine whether maintenance of muscle mass, especially in the lower extremities and/or reduction of centra l fat mass can prevent fractures., I. Raška Jr., M. Rašková, V. Zikán, J. Škrha., and Obsahuje bibliografii
This minireview briefly surveys the complexity of regulations governing the bone metabolism. The impact of clinical studies devoted to osteoporosis is briefly summarized and the emphasis is put on the significance of experimental mouse models based on an extensive use of genetically modified animals. Despite possible arising drawbacks, the studies in mice are of prime importance for expanding our knowledge on bone metabolism. With respect to human physiology and medicine, one should be always aware of possib le limitations as the experimental results may not be, or may be only to some extent, transposed to humans. If applicable to humans, results obtained in mice provide new clues for assessing un foreseen treatment strategies for patients. A recent publication representing in our opinion the important breakthrough in the field of bone metabolism in mice is commented in detail. It provides an evidence that skeleton is endocrine organ that affects energy metabolism and osteocalcin, a protein specifically synthesized and secreted by osteoblasts, is a hormone involved. If confirmed by other groups and applicable to humans, this study provides the awaited connection of long duration between bone disorders on one hand and obesity and diabetes on the other., O. Raška, K. Bernášková, I. Raška Jr., and Obsahuje seznam literatury
The aim of the study was to compare the bone mineral density (BMD) and body composition between ambulatory male MS patients and control subjects and to evaluate the relationships among body composition, motor disability, glucocorticoids (GC) use, and bone health. Body composition and BMD were measured by dual-energy X-ray absorptiometry in 104 ambulatory men with MS (mean age: 45.2 years) chronically treated with low-dose GC and in 54 healthy age-matched men. Compared to age-matched controls, MS patients had a significantly lower total body bone mineral content (TBBMC) and BMD at all measured sites except for the radius. Sixty five male MS patients (62.5 %) met the criteria for osteopenia and twenty six of them (25 %) for osteoporosis. The multivariate analysis showed a consistent dependence of bone measures (except whole body BMD) on BMI. The total leg lean mass % was as an independent predictor of TBBMC. The Expanded Disability Status Scale (EDSS), cumulative GC dose and age were independent determinants for BMD of the proximal femur. We conclude that decreasing mobility in male MS patients is associated with an increasing degree of osteoporosis and muscle wasting in the lower extremities. The chronic low-dose GC treatment further contributes to bone loss., V. Zikán ... [et al.]., and Obsahuje seznam literatury
It is known that chromosomes occupy non-random positions in the cell nucleus. However, it is not clear to what extent their nuclear positions, together with their neighborhood, are conserved in daughter cells. To address specific aspects of this problem, we used the model of the chromosomes carrying ribosomal genes that are organized in clusters termed Nucleolus Organizer Regions (NORs). We compared the association of chosen NOR-bearing chromosomes (NOR-chromosomes) with nucleoli, as well as the numbers of nucleoli, in the pairs of daughter cells, and established how frequently the daughter cells had equal numbers of the homologs of certain NOR-chromosomes associated with individual nucleoli. The daughter cells typically had different numbers of nucleoli. At the same time, using immuno-FISH with probes for chromosomes 14 and 15 in HeLa cells, we found that the cell pairs with identical combinations appeared significantly more frequently than predicted by the random model. Thus, although the total number of chromosomes associated with nucleoli is variable, our data indicate that the position of the NOR-bearing chromosomes in relation to nucleoli is partly conserved through mitosis., M. Kalmárová, E. Smirnov, L. Kováčik, A. Popov, I. Raška., and Obsahuje bibliografii a bibliografické odkazy