Increased levels of plasma cysteine predispose to obesity and metabolic disturbances. Our recent genetic analyses in spontaneously hypertensive rats (SHR) revealed mutated Folr1 (folate receptor 1) on chromosome 1 as a quantitative trait gene associated with reduced folate levels, hypercysteinemia and metabolic disturbances. The Folr1 gene is closely linked to the Folh1 (folate hydrolase 1) gene which codes for an enzyme involved in the hydrolysis of dietary polyglutamyl folates in the intestine. In the current study, we obtained evidence that Folh1 mRNA of the BN (Brown Norway) origin is weakly but significantly expressed in the small intestine. Next we analyzed the effects of the Folh1 alleles on folate and sulfur amino acid levels and consecutively on glucose and lipid metabolism using SHR-1 congenic sublines harboring either Folr1 BN and Folh1 SHR alleles or Folr1 SHR and Folh1 BN alleles. Both congenic sublines when compared to SHR controls, exhibited significantly reduced folate clearance and lower plasma cysteine and homocysteine levels which was associated with significantly decreased serum glucose and insulin concentrations and reduced adiposity. These results strongly suggest that, in addition to Folr1 , the Folh1 gene also plays an important role in folate and sulfur amino acid levels and affects glucose and lipid metabolism in the rat., J. Šilhavý, J. Krijt, J. Sokolová, V. Zídek, P. Mlejnek, M. Šimáková, V. Škop, J. Trnovská, O. Oliyarnyk, I. Marková, M. Hüttl, H. Malínská, L. Kazdová, F. Liška, V. Kožich, M. Pravenec., and Obsahuje bibliografii
It has been suggested that thiazolidinediones (TZDs) ameliorate insulin resistance in muscle tissue by suppressing muscle lipid storage and the activity of novel protein kinase C (nPKC) isoforms. To test this hypothesis, we analyzed long-term metabolic effects of pioglitazone and the activation of nPKC-ε and -θ isoforms in an animal model of the metabolic syndrome, the spontaneously hypertensive rat (a congenic SHR strain with wild type Cd36 gene) fed a diet with 60 % sucrose from the age of 4 to 8 months. Compared to untreated controls, pioglitazone treatment was associated with significantly increased basal (809±36 vs 527±47 nmol glucose/g/2h, P<0.005) and insulinstimulated glycogenesis (1321±62 vs 749±60 nmol glucose/g/2h, P<0.0001) in isolated gastrocnemius muscles despite increased concentrations of muscle triglycerides (3.83±0.33 vs 2.25±0.12 μmol/g, P<0.005). Pioglitazone-treated rats exhibited significantly increased membrane/total (cytosolic plus membrane) ratio of both PKC-ε and PKC-θ isoforms compared to untreated controls. These results suggest that amelioration of insulin resistance after long-term pioglitazone treatment is associated with increased activation of PKC-ε and -θ isoforms in spite of increased lipid concentration in skeletal muscles., I. Marková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy