The resting membrane potential (Vm) of isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris was studied by glass microelectrodes. The inhibition of chloride permeability by low pH did not affect Vm of the muscle fibers in isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris which was -48.7 mV (inside negative) at pH 7.3 and -49.1 at pH 5.6. On the other hand, bathing the muscles in Cl- and Na+-free solutions, or application of the chloride transporter inhibitor furosemide and Na+-K+-ATPase inhibitor ouabain depolarized the Vm by 3-5 mV. The effects of a Cl- -free solution and ouabain were not additive. This demonstrates relatively small contribution of equilibrium potential for Cl- to the resting membrane potential and electrogenic effect of Na+K+-ATPase which is dependent on the supply of Na+i ions by furosemide-sensitive and Cl-e- and Na+e-dependent electroneutral transport (most probably Na+K+Cl- cotransport)., E. M. Volkov, L. F. Nurullin, E. Nikolsky, J. Krůšek, F. Vyskočil., and Obsahuje bibliografii
Selective serotonine reuptake inhibitors (SSRI) are believed to be less dangerous in the treatment of depressive disorder in comparison with tricyclic antidepressants (TCA) due to their relative lack of cardiotoxicity. Thus, we investigated the effect of citalopram (SSRI) on membrane electrophysiology in rat cardiomyocytes in tissue culture. The results were compared with those from amitriptyline (TCA). The whole-cell configuration patch-clamp technique was used. Both citalopram and amitriptyline exhibited the concentration-dependent inhibition of the L-type calcium channel current (ICa). Citalopram in concentrations of 3 mM and 10 mM inhibited peak calcium current by 2.7 % and 8 %, respectively. We demonstrated the same potency of citalopram and amitriptyline to inhibit ICa. These observations led us to conclude that citalopram and amitriptyline are drugs, which exhibit a similar potency for causing concentration-dependent inhibition of ICa., J. Hamplová-Peichlová, J. Krůšek, I. Paclt, J. Slavíček, V. Lisá, F. Vyskočil., and Obsahuje bibliografii
At frog neuromuscular junction, noradrenaline (NA) shortens the release period for evoked quantal release acting on a b 1 receptor. To test the hypothesis that this action of NA is mediated by cAMP, we measured the latencies of focally recorded uni-quantal endplate currents (EPCs) after application of dibutyryl-cAMP (db-cAMP) and adenylyl cyclase activator, forskolin. The interval between the time when responses with minimal delay appeared and the point at which 90 % of all latencies had occurred (P90 parameter) was shortened in the presence of both 1x10-6 mol/l db-cAMP and 1x10-6 mol/l forskolin by about 30 %. The cAMP-induced shortening is equal to that found after application of NA and effects of both drugs are not additive., E. Bukcharaeva, D. Samigullin, E. E. Nikolsky, F. Vyskočil., and Obsahuje bibliografii
Derivative of 6-methyluracil, selective cholinesterase inhibitor C-547 potentiates miniature endplate currents (MEPCs) in rat external intercostal muscles (external ICM) more effectively than in internal intercostal muscles (internal ICM). Effect of the C-547 on intercostal muscles was compared with those on extensor digitorum longus (EDL) and diaphragm muscles. Half-effective concentrations for τ of MEPC decay arranged in increasing order were as follows: EDL, locomotor muscle, most sensitive = 1.3 nM, external ICM, inspiration muscle = 6.8 nM, diaphragm, main inspiration muscle = 28 nM, internal ICM, expiration muscle = 71 nM. External ICM might therefore be inhibited, similarly as the limb muscles, by nanomolar concentrations of the drug and do not participate in inspiration in the presence of the C-547. Moreover, internal ICM inhibition can hinder the expiration during exercise-induced fast breathing of C-547-treated experimental animals., K. Petrov ... [et al.]., and Obsahuje seznam literatury
M1-muscarinic acetylcholine (ACh) receptors (M1R) were directly demonstrated immunocytochemic ally in electronmicroscopic images of rat diaphragm neuromus cular junctions (NMJ). Specific electron-dense granules were located at presynaptic nerve ending membranes and in the sa rcolemma in the depths of postsynaptic folds. This first visualization of M1R on both sides of the NMJ is in agreement with previous pharmacological data on the regulatory role of M1R in quantal and non-quantal ACh release. and Obsahuje bibliografii a bibliografické odkazy
There are two principal mechanisms of acetylcholine (ACh) release from the resting motor nerve terminal: quantal and non-quantal (NQR); the former being only a small fraction of the total, at least at rest. In the present article we summarize basic research about the NQR that is undoubtedly an important trophic factor during endplate development and in adult neuromuscular contacts. NQR helps to eliminate the polyneural innervation of developing muscle fibers, ensures higher excitability of the adult subsynaptic membrane by surplus polarization and protects the RMP from depolarization by regulating the NO cascade and chloride transport. It shortens the endplate potentials by promoting postsynaptic receptor desensitization when AChE is inhibited during anti-AChE poisoning. In adult synapses, it can also activate the electrogenic Na+/K+-pump, change the degree of synchronization of quanta released by the nerve stimulation and affects the contractility of skeletal muscles., F. Vyskočil, A. I. Malomouzh, E. E. Nikolsky., and Obsahuje seznam literatury
The effect of Na+-K+-ATPase inhibitor ouabain on the resting membrane potential (Vm) was studied by glass microelectrodes in isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris and compared with frog sartorius muscle. In earthworm muscle, Vm was -49 mV (inside negative) in a reference external solution with 4 mmol/l K+. The electrogenic participation of Na+-K+-ATPase was absent in solutions with very low concentrations of 0.01 mmol/l K+, higher in 4 and 8 mmol/l K+ (4-5 mV) and maximal (13 mV) in solutions containing 12 mmol/l K+ where Vm was -46 mV in the absence and -33 mV in the presence of 1x10-4 M ouabain. The electrogenic participation of Na+-K+-ATPase was much smaller in m. sartorius of the frog Rana temporaria bathed in 8 and 12 mmol/l K+. The results indicate that the Na+-K+-ATPase is an important electrogenic factor in earthworm longitudinal muscle fibres and that its contribution to Vm depends directly on the concentration of K+ in the bathing solution., E. M. Volkov, L. F. Nurullin, I. Švandová, E. E. Nikolsky, F. Vyskočil., and Obsahuje bibliografii
Antiorthostatic hindlimb suspension (unloading) decreased the resting membrane potential (RMP) of skeletal muscle fibers in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat by about 10 % within 7 days and more. Inactivation of the membrane Na+,K+-pump by ouabain brought about similar depolarization as unloading. The increased sodium permeability of the membrane was excluded as the major cause of this depolarization by experiments in which TRIS was substituted for Na+ in the medium. On the other hand, the decrease in the electrogenic participation of the Na+,K+-pump is apparently one of the causes of RMP decrease during hypogravity, in EDL muscle in particular., O. Tyapkina ... [et al.]., and Obsahuje seznam literatury
The mode of inhibition of endplate currents by four esters of 1,1-dimethyl-3-oxybutyl phosphonic acid with different lipophilicities and molecule lengths were estimated by mathematical modeling based on previous electrophysiological data supplemented by several experiments with rhythmic stimulation. The aim was to discriminate between their receptor and non-receptor effects. It was shown that all esters have a two-component mechanism of depression: inhibition of the receptor open channel and allosteric modulation of the receptorchannel complex. The ratio of both functional components depends on the length and lipophilicity of the esters. Short and less lipophilic esters mostly act as open channel inhibitors and the rate of inhibition substantially depends on the rate of stimulation, i. e. probability of the receptor-channel opening. As the length of the ester radicals and their lipophilicity increased, these compounds were more active as allosteric receptor inhibitors, probably hindering the function of nAChRs from the lipid annulus., E. Pryazhnikov ... [et al.]., and Obsahuje seznam literatury