This corpus contains annotations of translation quality from English to Czech in seven categories on both segment- and document-level. There are 20 documents in total, each with 4 translations (evaluated by each annotator in paralel) of 8 segments (can be longer than one sentence). Apart from the evaluation, the annotators also proposed their own, improved versions of the translations.
There were 11 annotators in total, on expertise levels ranging from non-experts to professional translators.
The ParCzech 3.0 corpus is the third version of ParCzech consisting of stenographic protocols that record the Chamber of Deputies’ meetings held in the 7th term (2013-2017) and the current 8th term (2017-Mar 2021). The protocols are provided in their original HTML format, Parla-CLARIN TEI format, and the format suitable for Automatic Speech Recognition. The corpus is automatically enriched with the morphological, syntactic, and named-entity annotations using the procedures UDPipe 2 and NameTag 2. The audio files are aligned with the texts in the annotated TEI files.
Statistical component of Chimera, a state-of-the-art MT system. and Project DF12P01OVV022 of the Ministry of Culture of the Czech Republic (NAKI -- Amalach).
The dataset used for the Ptakopět experiment on outbound machine translation. It consists of screenshots of web forms with user queries entered. The queries are available also in a text form. The dataset comprises two language versions: English and Czech. Whereas the English version has been fully post-processed (screenshots cropped, queries within the screenshots highlighted, dataset split based on its quality etc.), the Czech version is raw as it was collected by the annotators.
The THEaiTRobot 1.0 tool allows the user to interactively generate scripts for individual theatre play scenes.
The tool is based on GPT-2 XL generative language model, using the model without any fine-tuning, as we found that with a prompt formatted as a part of a theatre play script, the model usually generates continuation that retains the format.
We encountered numerous problems when generating the script in this way. We managed to tackle some of the problems with various adjustments, but some of them remain to be solved in a future version.
THEaiTRobot 1.0 was used to generate the first THEaiTRE play, "AI: Když robot píše hru" ("AI: When a robot writes a play").
The THEaiTRobot 2.0 tool allows the user to interactively generate scripts for individual theatre play scenes.
The previous version of the tool (http://hdl.handle.net/11234/1-3507) was based on GPT-2 XL generative language model, using the model without any fine-tuning, as we found that with a prompt formatted as a part of a theatre play script, the model usually generates continuation that retains the format.
The current version also uses vanilla GPT-2 by default, but can also instead use a GPT-2 medium model fine-tuned on theatre play scripts (as well as film and TV series scripts). Apart from the basic "flat" generation using a theatrical starting prompt and the script model, the tool also features a second, hierarchical variant, where in the first step, a play synopsis is generated from its title using a synopsis model (GPT-2 medium fine-tuned on synopses of theatre plays, as well as film, TV series and book synopses). The synopsis is then used as input for the second stage, which uses the script model.
The choice of models to use is done by setting the MODEL variable in start_server.sh and start_syn_server.sh
THEaiTRobot 2.0 was used to generate the second THEaiTRE play, "Permeation/Prostoupení".
AMALACH project component TMODS:ENG-CZE; machine translation of queries from Czech to English. This archive contains models for the Moses decoder (binarized, pruned to allow for real-time translation) and configuration files for the MTMonkey toolkit. The aim of this package is to provide a full service for Czech->English translation which can be easily utilized as a component in a larger software solution. (The required tools are freely available and an installation guide is included in the package.)
The translation models were trained on CzEng 1.0 corpus and Europarl. Monolingual data for LM estimation additionally contains WMT news crawls until 2013.
UMC 0.1 Czech-English-Russian is a multilingual parallel corpus of texts in Czech, Russian and English languages with automatic pairwise sentence alignments. The primary aim of UMC is to extend the set of languages covered by the corpus CzEng mainly for the purposes of machine translation.
All the texts were downloaded from a single source — The Project Syndicate (Copyright: Project Syndicate 1995-2008), which contains a huge collection of high-quality news articles and commentaries. We were given the permission to use the texts for research and non-commercial purposes. and FP6-IST-5-034291-STP (EuroMatrix)
We release a sizeable monolingual Urdu corpus automatically tagged with part-of-speech tags. We extend the work of Jawaid and Bojar (2012) who use three different taggers and then apply a voting scheme to disambiguate among the different choices suggested by each tagger. We run this complex ensemble on a large monolingual corpus and release the both plain and tagged corpora. and it is supported by the MosesCore project sponsored by the European Commission’s Seventh Framework Programme (Grant Number 288487).