In the study of Tomlain (1997) a soil water balance model was applied to evaluate the climate change impacts on the soil water storage in the Hurbanovo locality (Southwestern Slovakia), using the climate change scenarios of Slovakia for the years 2010, 2030, and 2075 by the global circulation models CCCM, GISS and GFD3. These calculations did not take into consideration neither the various soil properties, nor the groundwater table influence on soil water content. In this study, their calculated data were compared with those monitored at the same sites. There were found significant differences between resulting soil water storage of the upper 100 cm soil layer, most probably due to cappilary rise from groundwater at sites 2 and 3. It was shown, that the soil properties and groundwater table depth are importat features strongly influencing soil water content of the upper soil layer; thus the application of the soil water balance equation (Eq. (1)), neglecting the above mentioned factors, could lead to the results far from reality. and V práci Tomlaina (1997) bol aplikovaný bilančný model vodného režimu pôd na ohodnotenie dopadu klimatickej zmeny na vodné zásoby pôdy v lokalite Hurbanovo (juhozápadné Slovensko), použijúc scenáre klimatickej zmeny pre Slovensko pre roky 2010, 2030 a 2075, založené na globálnych cirkulačných modeloch CCCM, GISS a GFD3. V týchto výpočtoch nebol braný do úvahy vplyv vlastností pôdy a hladiny podzemnej vody na vlhkosť pôdy. V práci boli porovnané vypočítané hodnoty zásob vody s monitorovanými v tej istej lokalite. Bol nájdený význačný rozdiel medzi zásobami vody v 100-cm hornej vrstve pôdy najpravdepodobnejšie spôsobený kapilárnym prítokom od hladiny podzemnej vody v monitorovacích miestach 2 a 3. Bolo ukázané, že pôdne vlastnosti a hĺbka hladiny podzemnej vody sú dôležitými faktormi, ktoré silno ovplyvňujú vlhkosť hornej vrstvy pôdy; z toho vyplýva, že aplikácia bilančnej rovnice (rov. (1)), ktorá zanedbáva vyššie uvedené faktory, nedáva reálne výsledky.
A soil moisture content map is important for providing information about the distribution of moisture in a given area. Moisture content directly influences agricultural yield thus it is crucial to have accurate and reliable information about moisture distribution and content in the field. Since soil is a porous medium modified generalized Archie’s equation provides the basic formula to calculate moisture content data based on measured ECa. In this study we aimed to find a more accurate and cost effective method for measuring moisture content than manual field sampling. Locations of 25 sampling points were chosen from our research field as a reference. We assumed that soil moisture content could be calculated by measuring apparent electrical conductivity (ECa) using the Veris-3100 on-the-go soil mapping tool. Statistical analysis was carried out on the 10.791 ECa raw data in order to filter the outliers. The applied statistical method was ±1.5 interquartile (IRQ) distance approach. The visualization of soil moisture distribution within the experimental field was carried out by means of ArcGIS/ArcMAP using the inverse distance weighting interpolation method. In the investigated 25 sampling points, coefficient of determination between calculated volumetric moisture content data and measured ECa was R2 = 0.87. According to our results, volumetric moisture content can be mapped by applying ECa measurements in these particular soil types.
A numerical model of the unsaturated water movement in capillary pores of soil matrix was used for the water flow in macropores and in capillary pores. Hydraulic conductivity dependance on soil moisture content for macropores was linearized between two soil moisture contents: the saturated soil matrix moisture content and the saturated soil moisture content with macropores. The second one is neither possible to define unambiguously nor measure. It is possible to determine its optimal value from the measured moisture content courses and by those, calculated by mathematic model. and Na výpočet pohybu vody v dvoch oblastiach, v makropóroch a kapilárnych póroch bol použitý numerický model pohybu vody v kapilárnych póroch vodou nenasýtenej pôdnej matrice. Závislosť hydraulickej vodivosti od vlhkosti pôdy pre makropórovú oblasť bola linearizovaná medzi dvoma vlhkosťami pôdy: vlhkosťou vodou nasýtenej pôdnej matrice a vlhkosťou vodou nasýtenej pôdy aj s makropórmi. Poslednú z týchto dvoch nemožno jednoznačne definovať ani namerať. Z priebehov vlhkostí vo vybraných hĺbkach pôdy určených meraním a matematickým modelovaním môžeme určiť optimálnu hodnotu vlhkosti vodou nasýtenej pôdy aj s makropórmi.