The effects of different spectral region of excitation and detection of chlorophyll (Chl) a fluorescence at room temperature on the estimation of excitation energy utilization within photosystem (PS) 2 were studied in wild-type barley (Hordeum vulgare L. cv. Bonus) and its Chl b-less mutant chlorina f2 grown under low and high irradiances [100 and 1 000 µmol(photon) m-2 s-1]. Three measuring spectral regimes were applied using a PAM 101 fluorometer: (1) excitation in the red region (maximum at the wavelength of 649 nm) and detection in the far-red region beyond 710 nm, (2) excitation in the blue region (maximum at the wavelength of 461 nm) and detection beyond 710 nm, and (3) excitation in the blue region and detection in the red region (660- 710 nm). Non-photochemical quenching of maximal (NPQ) and minimal fluorescence (SV0), determined by detecting Chl a fluorescence beyond 710 nm, were significantly higher for blue excitation as compared to red excitation. We suggest that this results from higher non-radiative dissipation of absorbed excitation energy within light-harvesting complexes of PS2 (LHC2) due to preferential excitation of LHC2 by blue radiation and from the lower contribution of PS1 emission to the detected fluorescence in the case of blue excitation. Detection of Chl a fluorescence originating preferentially from PS2 (i.e. in the range of 660-710 nm) led to pronounced increase of NPQ, SV0, and the PS2 photochemical efficiencies (FV/FM and FV'/FM'), indicating considerable underestimation of these parameters using the standard set-up of PAM 101. Hence PS1 contribution to the minimal fluorescence level in the irradiance-adapted state may reach up to about 80 %. and M. Štroch ... [et al.].
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m-2 s-1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective. and V. Karlický ... [et al.].