a1_Previous studies have focused mainly on the accumulation of photosynthates and less on their distribution in sweet potato (Ipomoea batatas L.). In addition, the effect of photosynthate accumulation in root tubers on photosynthate distribution was not considered. Thus, a field experiment was carried out from May to October (2011 and 2012) to clarify the differences in photosynthate transport between high- and low-yielding sweet potato. This study mainly focused on the photosynthetic capacities of leaves, photosynthate distribution, and characteristics of photosynthate accumulation in root tubers. Results showed the high-yielding varieties displayed the higher fresh root tuber yield and the economic coefficient than the low-yielding varieties. They also showed greater net photosynthetic rate with a pronounced increase at the early and middle growth stages (8.9% and 11.4%, respectively). After the growth peak, the leaf area index (LAI) of the high-yielding varieties decreased with time and was maintained at 2~3 until harvest, whereas the LAI of the low-yielding varieties decreased slowly. The high-yielding varieties reached the 13C distribution rate ≥ 50% at the early (2011, 2012) and middle (2011) growth stages, whereas the low-yielding varieties reached it at the late (2011) or middle (2012) growth stages. At harvest, the 13C distribution rates in the branches and root tubers of the
high-yielding varieties were 6.0-20.3% and 73.7-91.2%, respectively, whereas those of the low-yielding varieties were 29.6-34.7% and 60.7-63.5%, respectively. The high-yielding varieties showed the remarkable initial potential in root tubers, which was much better than that of the low-yielding varieties. The high-yielding varieties also produced heavier root tubers and the higher number of root tubers per plant at the early bulking stage., a2_The root tubers also attained the greater content of soluble sugar and starch. The high-yielding varieties formed root tubers earlier, showed strong abilities to transport photosynthates into the root tubers, and exhibited a higher mean accumulation rate. These varieties could also reduce the photosynthate consumption in branch leaves and stems. Therefore, the high-yielding varieties established growth advantage for the root tubers earlier. It contributed to a reasonable distribution structure of photosynthates that led to the high root tuber yield. Based on our results, effective agricultural measures can be chosen to improve the root tuber yield of sweet potato., H. J. Liu, S. S. Chai, C. Y. Shi, C. J. Wang, G. B. Ren, Y. Jiang, C. C. Si., and Obsahuje seznam literatury
Maize (Zea mays) seedlings were exposed for 6 h to strong irradiance (1 000 μmol m-1 s-1 of PPFD) at 5, 12, 17, or 25 °C, followed by an exposure to the darkness for 6 h at 22 °C. Leaf chlorophyll fluorescence, net photosynthetic rate (PN), and the amount of superoxide radicals (O2-⋅) in relation to chilling-induced photoinhibition were investigated. During the photophase, a good correlation (r=-0.879) was observed between ΦPS2 (relative quantum efficiency of PS2 electron transport) and the amount of O2-⋅. Treatment with exogenous O2-⋅ reduced the PN and ΦPS2 as the chilling stress did, that was inhibited by specific scavenger of O2-⋅. Hence chilling-induced photoinhibition might be due to the production of O2-⋅. In contrast, in the dark period, PN and ΦPS2 of the seedlings treated with the exogenous O2-⋅ were enhanced, but they were inhibited by the specific scavenger of O2-⋅, showing the photoprotective role of O2-⋅ in the recovery phase. Furthermore, in terms of the effect of exogenous O2-⋅ on the xanthophyll cycle, the O2-⋅ production suggested a promotion effect for the de-epoxidation of violaxanthin during the photophase, the epoxidation of zeaxanthin at the dark stage, and the increase of the xanthophyll pool both in the photophase and dark phase, resulting in an enhancement of the ability of non-photochemical quenching to avoid or alleviate the damage to photosynthetic apparatus. and D. Ke, G. Sun, Y. Jiang.
Drought impacts severely crop photosynthesis and productivity. Development of transgenic rice overexpressing maize phosphoenolpyruvate carboxylase (PEPC) is a promising strategy for improving crop production under drought stress. However, the molecular mechanisms of protection from PEPC are not yet clear. The objective of this study was: first, to characterize the response of individual photosynthetic components to drought stress; second, to study the physiological and molecular mechanisms underlying the drought tolerance of transgenic rice (cv. Kitaake) over-expressing maize PEPC. Our results showed that PEPC overexpressing improved the ability of transgenic rice to conserve water and pigments during drying as compared to wild type. Despite the fact that drought induced reactive oxygen species and damaged photosystems (especially, PSI) in both lines, higher intercellular CO2 concentration protected the photosynthetic complexes, peptides, and also ultrastructure of thylakoid membranes against the oxidative damage in transgenic rice. In conclusion, although photosynthetic apparatus suffered an inevitable and asymmetric impairment during drought conditions, PEPC effectively alleviated the oxidative damage on photosystems and enhanced the drought tolerance by increasing intercellular CO2 concentration. Our investigation provided critical clues for exploring the feasibility of using C4 photosynthesis to increase the yield of rice under the aggravated global warming., W. J. Shen, G. X. Chen, J. G. Xu, Y. Jiang, L. Liu, Z. P. Gao, J. Ma, X. Chen, T. H. Chen, and C. F. Lv., and Obsahuje seznam literatury