In experiments on 51 healthy anaesthetized and paralyzed rabbits the changes in parameters of mechanics of breathing during high frequency jet ventilation (HFJV) were determined and the mechanisms responsible for these changes were investigated. In the first series of experiments with two groups of animals ventilated by HFJV with relative inspiratory time ti = 0.5 and ti = 0.7 airway resistance (Raw) after 5 h of HFJV in the ti = 0.5 group increased from 1.14±0.05 to 2.31±0.09 kPa.l_1.s (P<0.001), in the ti = 0.7 group from 1.22±0.04 to 1.78±0.08 kPa.l-1.s (P<0.01). Dynamic compliance (Cdyn) decreased in the ti = 0.5 group from 0.041 ±0.004 to 0.017±0.001 l.kPa-1 (P<0.01) and in the ti = 0.7 group from 0.034± 0.003 to 0.022± 0.002 l.kPa-1 (P<0.01). In the second series of experiments a group of animals was ventilated by HFJV after cervical vagotomy. The deterioration of Raw and Cdyn was significantly reduced in vagotomized rabbits in comparison to the controls without vagotomy. Finally, the study of phospholipid content in bronchoalveolar lavage fluid revealed no significant differences after 5 h of artificial ventilation or spontaneous breathing. These data indicate that HFJV results in changes in the parameters of mechanics of breathing in healthy lungs, which may be attenuated, but not fully eliminated, by bilateral cervical vagotomy. The decrease in Cdyn and increase in Raw are probably not due to changes in the pulmonary surfactant content.
This study investigated whether each part of the heart is evenly innervated by the left or right vagus and observed the mechanism of compensatory recovery after unilateral cervical vagotomy. HR, BP, LVSP and ±dp/dt max all decreased one week after left vagotomy, whereas only BP and -dp/dt max decreased one week after right vagotomy. We stern blot analyses revealed that the expression of M2 receptors in the left atrium and left ventricle was upregulated after subacute (1 week) left/right vagotomy. However, significantly more cholinesterase-positive nerves in LV and RV were seen one week after unilateral vagotomy compared to the sham-operated group. In addition, baroreflex sensitivity was increased after subacute right vagotomy. The decreasing effects of ACh (0.5 μ g/kg) on LVSP and ±dp/dt max (but not on HR and BP) were facilitated by subacute unilateral vagotomy. Our present experiments indicate that 1) the working myocardium is innervated bilaterally by the vagus, 2) ventricular contractility is influenced more by denervation of the left than the right vagus and 3) up-regulation of M2 muscarinic receptors in the left heart, increase of cholinergic nerves, and high baroreflex sensitivity could be involved in the mechanism of compensatory hemodynamic recovery via contralateral vagus overactivity, thereby amplifying contralateral vagal activity and decreasing cardiac contractility., L. N. Chen, W. J. Zang, X. J. Yu, J. Liu, D. L. Li, S. S. Kong, J. Lu, X. L. Xu., and Obsahuje bibliografii a bibliografické odkazy
Previous morphological and physiological studies have suggested that the adrenergic innervation of the dorsal motor nucleus of the vagus nerve (dmnX) is involved in direct synaptic inhibition of parasympathetic preganglionic neurones of the vagus that control secretion of pancreatic insulin. We investigated the effects of bilateral 6-hydroxydopamine (6-OHDA) lesions of adrenergic innervation of the dmnX on pancreatic insulin secretion and glycaemia in normal and vagotomized rats. After two weeks the 6-OHDA lesions produced a marked increase in circulating insulin levels, but no change in glycaemia. Hyperinsulinaemia after adrenergic denervation of the dmnX was more pronounced when a glucose bolus was injected intraarterially. Bilateral subdiaphragmatic vagotomy reversed the observed hyperinsulinaemia. This targeted pharmacological lesion of the adrenergic innervation of dmnX thus causes hypersecretion by pancreatic B cells, an effect which requires an intact vagus nerve.
Neuronal activity in the medulla oblongata and neurogenic inflammation of airways were investigated in a guinea pig model induced by repeated intra-esophageal instillation of hydrochloric acid (HCl) after vagotomy. Unilateral vagotomy was performed in the vagotomy group, while a sham-operation was performed in the sham group. Operation was not conducted in sham control group. Airway inflammation was observed with hematoxylin and eosin (HE) staining. C-fos protein was measured by immunohistochemistry (IHC) and Western blot (WB). Substance P was examined by IHC and enzyme-linked immuno sorbent assay (ELISA). Airway microvascular permeability was detected by evans blue dye (EBD) fluorescence. Inflammation of airway was observed in the trachea and bronchi after chronic HCl perfusion into the lower esophagus, and was alleviated after unilateral vagotomy. C-fos expression in the medulla oblongata
was lower in the vagotomy group compared to the sham control and sham groups. Substance P-like immunoreactivity (SP-li), concentration and microvascular leakage in airway were lower in the vagotomy group than that in the other groups. Our results suggest that vagotomy improved neurogenic inflammation of airways and decreased neuronal activities, the afferent nerves and neurons in medulla oblongata may be involved in neurogenic inflammation of airways mediated by esophageal-bronchial reflex.