Epidemiological and clinical studies suggest that asthma is associated with adverse cardiovascular outcomes, but its mechanism is uncertain. 5-Hydroxytryptamine (5-HT) is a mediator involved in asthma and in cardiovascular functioning. Thus, in the present study, we explored whether allergic sensitization in guinea pigs modifies 5-HT-induced contractile responses and 5-HT2A receptor expression in thoracic aorta rings. We found that sensitization produced a significant increase of 100 µM 5-HT-induced contractions of aorta rings (~27 % greater contraction than in non-sensitized animals, p<0.05). Preincubation with 10 nM ketanserin (a 5-HT2A receptor antagonist) reduced by ~30 % (p=0.003) and ~36 % (p=0.005) the area under the curve of 5-HT-induced contractions in aortas from non-sensitized and sensitized animals, respectively. There were no differences between sensitized and non-sensitized animals with respect to mRNA (qPCR) and protein (Western blot) expression of 5-HT2A receptor in thoracic aortas. We concluded that in this guinea pig model of asthma, allergic sensitization is not confined to airways, but also affects arterial contractile responses to 5-HT; changes in the expression of the 5-HT2A receptor appear not to be involved in this phenomenon.
Hereditary hypertriglyceridemic (hHTG) rats are characterized by increased blood pressure and impaired endotheliumdependent relaxation of conduit arteries. The aim of this study was to investigate the effect of long-term (4 weeks) treatment of hHTG rats with three drugs which, according to their mechanism of action, may be able to modify the endothelial function: simvastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase), spironolactone (an antagonist of aldosterone receptors) and L-arginine (a precursor of nitric oxide formation). At the end of 4th week the systolic blood pressure in the control hHTG group was 148±2 mm Hg and in control normotensive Wistar group 117±3 mm Hg. L-arginine failed to reduce blood pressure, but simvastatin (118±1 mm Hg) and spironolactone (124±4 mm Hg) treatment significantly decreased the systolic blood pressure. In isolated phenylephrine-precontracted aortic rings from hHTG rats endothelium-dependent relaxation was diminished as compared to control Wistar rats. Of the three drugs used, only simvastatin improved acetylcholine-induced relaxation of the aorta. We conclude that both simvastatin and spironolactone reduced blood pressure but only simvastatin significantly improved endothelial dysfunction of aorta. Prominent increase in the expression of eNOS in large conduit arteries may be the pathophysiological mechanism underlying the protective effect of simvastatin in hHTG rats., J. Török, I. L'upták, J. Matúšková, O. Pecháňová, J. Zicha, J. Kuneš, F. Šimko., and Obsahuje bibliografii
The aim of the present study was to examine the effect of prolonged passive smoking (lasting 3 weeks) on plasma catecholamine levels and reactivity of isolated rabbit arteries. Plasma noradrenaline, adrenaline and dopamine levels were determined radioenzymatically. Isolated rings of the thoracic aorta and carotid artery were suspended in organ chambers and connected to a force transducer for the recording of isometric tension. Plasma noradrenaline levels were found to be significantly elevated in rabbits subjected to passive smoking for 3 weeks. Plasma adrenaline and dopamine levels were not changed. Transmural nerve stimulation of arterial rings evoked frequency-dependent contractions. Prolonged passive smoking did not affect neurogenic contractions of the arteries tested. On the other hand, endothelium-dependent relaxations of phenylephrine-precontracted arteries were significantly impaired. Furthermore, hypertrophy of the left ventricle was observed. In conclusion, passive smoking impairs endothelium-dependent relaxations but not neurogenic contractions of systemic arteries. The impaired relaxations of arteries may be, at least in part, mediated through the degradation of released nitric oxide by superoxide anions derived from cigarette smoke., J. Török, A. Gvozdjáková, J. Kucharská, I. Balažovjech, S. Kyselá, F. Šimko, J. Gvozdják., and Obsahuje bibliografii
Asthma poses an increased risk for cardiovascular disorders, suggesting that allergy, which is an underlying process in asthma, causes atypical functioning of organs other than lungs. In a previous study in a guinea pig asthma model, we concluded that allergic sensitization increased aorta contractile responses to 5-HT. To further characterize these responses, here we explored the role of the 5-HT2 receptors family. We found that TCB-2 (5-HT2A agonist) and WAY161503 (5-HT2C agonist) induced aorta contractions resembling those elicited by 5-HT but less intense (~43 % and ~25 %, respectively). In these experiments, aortas from sensitized guinea pigs showed increased contractions to TCB-2, but not to WAY161503. In turn, MDL 100907 (5-HT2A antagonist) and RS-102221 (5-HT2C antagonist) caused a notably and a mild reduction of the 5-HT-induced contractions, respectively, with no differences seen between sensitized and non-sensitized tissues. BW723C86 (5-HT2B agonist) did not induce contractile responses and RS-127445 (5-HT2B antagonist) did not modify the contractile responses to 5-HT. In nonsensitized aortas, the pattern of protein expression of receptors was 5HT2B>5-HT2A=5-HT2C, which did not change in sensitized animals. In conclusion, we found that allergic sensitization increased the aorta contractile responses to 5-HT, partly mediated by enhanced responses of 5-HT2A receptors, which was unrelated to changes in the expression of these receptors.