Larvae of Dendrolimus punctatus overwinter in diapause. In the Yangtze River Region, this species is multivoltine at altitudes below 400 m and univoltine above 700 m a.s.l. The photoperiodic response of the univoltine population, investigated at five day lengths (11.5, 12.5, 13.5, 14.5 and 15.5 h) at 27 + 1C, indicates that D. punctatus is a long-day species. Diapause was induced in 95-100% of the individuals by three short photophases (11.5-13.5 h), while diapause incidence decreased steeply with increase in day length down to 10% at 15.5 h. The critical daylength (CDL = day length resulting in a 50% incidence of diapause) is 14.6 h. When induced by critical or longer photophases (14.5 and 15.5 h), diapause terminated spontaneously, without any change in photoperiod or temperature. Diapause induced at shorter photophases was more intense and not terminated without activation by diapause averting conditions. Larvae in diapause lived for up to 190 d when kept under a 11.5 h photophase during which they remained sensitive to the photoperiodic signal. In transfer experiments, diapause was terminated after an increase in photoperiod, even if it was within the range of diapause inducing photoperiods: from 11.5 h to 13.5 h. This study revealed that the univoltine hill dwelling population of D. punctatus undergoes a facultative diapause. Although potentially multivoltine they are univoltine because of the low temperatures at that altitude., Ju-Ping Zeng, Yong Wang, Xing-Ping Liu., and Obsahuje seznam literatury
Decades of liver regeneration studies still left the termination phase least elucidated. However regeneration ending mechanisms are clinicaly relevant. We aimed to analyse the timing and transcriptional control of the latest phase of liver regeneration, both controversial. Male Wistar rats were subjected to 2/3 partial hepatectomy with recovery lasting from 1 to 14 days. Time-series microarray data were assessed by innovative combination of hierarchical clustering and principal component analysis and validated by real-time RT-PCR. Hierarchical clustering and principal component analysis in agreement distinguished three temporal phases of liver regeneration. We found 359 genes specifically altered during late phase regeneration. Gene enrichment analysis and manual review of microarray data suggested five pathways worth further study: PPAR signalling pathway; lipid metabolism; complement, coagulation and fibrinolytic cascades; ECM remodelling and xenobiotic biotransformation. Microarray findings pertinent for termination phase were substantiated by real-time RT-PCR. In conclusion, transcriptional profiling mapped late phase of liver regeneration beyond 5th day of recovery and revealed 5 pathways specifically acting at this time. Inclusion of longer post-surgery intervals brought improved coverage of regeneration time dynamics and is advisable for further works. Investigation into the workings of suggested pathways might prove helpful in preventing and managing liver tumours., D. Rychtrmoc, ... [et al.]., and Obsahuje seznam literatury