A system for the evaluation of temperature changes in living tissue at a dimensional level of a single cell is described. A glass micropipette the tip of which is filled with semiconducting glass (Rech et al. 1992), is used as a microsensor. The changes of conductivity of the sensor due to variations of temperature are evaluated by electronic circuitry based on the measurement of an AC current of sinusoidal waveform flowing through the sensor. Temperature changes in the range of 0.01 K can be detected in this way.
We proposed a temperature sensitive microelectrode for rapid measurements of temperature at the cellular level. In principle, the electrical impedance of the tip of the microelectrode changes with temperature. We designed an impulse measurement system (STEP) sensitive to the above changes of impedance. The system is based on a presettable negative input impedance of the current to a voltage converter. We compared the efficiency of the new STEP with the currently used RAMP system. We found following advantages of the STEP system: i) the danger of high voltage oscillations which could mechanically destroy the microelectrode tip is eliminated; ii) this system provides the opportunity to set the maximum sensitivity of the system according to the measured temperature interval. Moreover, the STEP method makes it possible to measure the resistance by using a sinusoidal stimulation signal which has to be preliminarily compensated by a rectangular signal. The shortest sampling period of the new system represents 0.1 ms with a resolution higher than 0.1 K and sensitivity better than 30 mV/K.
The articles gives a summary of measurement units that are used for diagnostic measurements of fluid boilers combustion channels. During the verification process VŠB-TU Ostrava designed and tested various types of probes for temperature and velocity measurements, off-take of both gaseous samples of waste gases and solid particles samples. Taken results gives more detailed information about fluid lyer behaviour for various fluid bed boiler types. Moreover they can be of use in case of boiler modifications or boiler operation improvements. This article is based on the project GA 617 50 11 solving - "Combine combustion of coal and biomass in fluid bed boilers"., Bohumír Čech, Zdeněk Kadlec and Jan Matoušek., and Obsahuje bibliografii
A digital holographic interferometry (DHI) for 3D measurement of temperature distributions in moving fluid is presented in this paper. The measurement uses digital holographic setup for measurement of a flow of fluid propagated through an orifice and tomographic approach for 3D reconstruction of the flow. The periodic character of the flow and synchronization between the digital camera and external trigger driving the phenomenon allows us to measure phenomena with much higher frequency when compared to frame rate of the digital camera. Furthermore one can capture a large number of the flow projections from different viewing directions which are later used for 3D tomographic reconstruction of the whole temperature field of the flow. The measurement results are verified and compared with hot wire method (CTA) in the paper. and Tento článek popisuje metodu digitální holografické interferometrie (DHI) pro 3D měření rozložení tepla v pohybující se tekutině. V experimentu je pomocí digitálního holografického uspořádání měřena teplota tekutiny proudící skrze otvor. Periodický charakter proudění spolu se synchronizací kamery a ovládání proudění umožňuje zaznamenat velké množství 2D projekcí proudu z různých směrů pozorování. Ty pak slouží jako vstupní data pro tomografickou rekonstrukci teplotního rozložení tekutiny. V článku jsou prezentovány výsledky měření a jejich verifikace pomocí drátkové metody CTA.