Trissolcus grandis is an important egg parasitoid of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), the most serious pest of wheat in Iran. The thermal requirements of two populations of T. grandis were studied at five constant temperatures ranging from 20-32°C. Thermal thresholds for development were calculated using linear regression and degree-day models were determined by fitting non-linear equations to the data. The lower threshold for development was estimated to be 12.5 and 12.1°C, respectively, for males and females of the Bonab population, compared to 14.4 and 14.5°C for those of the Qaramalek population. Complete development required 143.8 and 162.8 degree-days, respectively, for males and females of the Bonab population and 116.9 and 124.6 for those of the Qaramalek population. Thus, wasps from the warmer region (Qaramalek) developed faster than those from the cooler region (Bonab), but had a higher thermal threshold for initiating development. Bonab females attained their highest fecundity (117.7 ± 7.2) at the lowest temperature tested (20°C), whereas the fecundity of Qaramalek females was maximal (96.8 ± 11.5) at 26°C. Biological control programmes that seek to augment wasp populations in wheat fields early in the spring, when natural rates of sunn pest parasitism tend to be low, should consider wasp thermal requirements to ensure the selection and release of locally-adapted parasitoids.
Wolbachia is a maternally transmitted intracellular symbiont which causes reproductive distortions in the arthropods it infects. In recent years there has been an increasing interest in using Wolbachia as a potential tool for biological control by genetic manipulation of insect pests. In the present paper we report Wolbachia infection in several Trissolcus wasps (Hymenoptera: Scelionidae) which are important egg parasitoids of the sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutellaridae). We used DNA sequence data for a gene encoding a surface protein of Wolbachia (wsp) not only to confirm Wolbachia infection but also to discriminate Wolbachia strains. Phylogenetic analyses indicated that Wolbachia strains in Trissolcus species were closely related to one another and belonged to supergroup B. Determination of the infection status of various populations, the possible role of Wolbachia in causing the incompatibility and knowledge of the reproductive compatibility of Trissolcus populations is important for the success of parasitoids in sunn pest management., Nurper Guz ... [et al.]., and Obsahuje seznam literatury