Responses of insects to recent climate change have been well documented in a number of taxa, but not in wasps. This study examined shifts in phenology of the two most important wasp species (Vespa crabro and Vespula germanica) in Poland over the last three decades. Both species showed similar temporal trends, advancing their phenology after the early 1980s, but this pattern was detected only for workers not for the appearance of queens. The appearance times for V. germanica were negatively related to mean April temperature, appearing earlier in years with warmer springs, and positively related to precipitation in April. The studied species advanced aspects of their phenology, but linking this to temperature was not achieved for V. crabro suggesting that we have to pay more attention to the life history traits of the study organisms.
The ongoing process of climate change will result in higher temperatures during winter and therefore might increase the survival of overwintering invertebrates. However, the process may also lead to a reduction in snow cover and expose overwintering invertebrates to lower temperatures, which could result in higher mortality. During a field experiment, I investigated the effects of a reduction in snow cover on the survival of the ant Temnothorax crassispinus, which overwinters in nests located on the ground. Ant colonies differed in the survival rate of the workers in the experimental (from which snow cover was removed) and control group. In the control group, the survival rate was unrelated to colony size. However, in the experimental group, from which snow was removed after each heavy snowfall, worker survival was lower in small colonies. Such colony size related mortality may affect the fusion of colonies before winter. and Sławomir Mitrus.