Alkali stress is an important agricultural problem that affects plant metabolism, specifically root physiology. In this study, using two rice cultivars differing in alkali resistance, we investigated the physiological and molecular responses of rice plants to alkali stress. Compared to the alkali-sensitive cultivar (SC), the alkali-tolerant cultivar (TC) maintained higher photosynthesis and root system activity under alkali stress. Correspondingly, the Na+ content in its shoots was much lower, and the contents of mineral ions (e.g., K+, NO3-, and H2PO4-) in its roots was higher than those of the SC. These data showed that the metabolic regulation of roots might play a central role in rice alkali tolerance. Gene expression differences between the cultivars were much greater in roots than in shoots. In roots, 46.5% (20 of 43) of selected genes indicated over fivefold expression differences between cultivars under alkali stress. The TC had higher root system activity that might protect shoots from Na+ injury and maintain normal metabolic processes. During adaptation of TC to alkali stress, OsSOS1 (salt overly sensitive protein 1) may mediate Na+ exclusion from shoots or roots. Under alkali stress, SC could accumulate Na+ up to toxic concentrations due to relatively low expression of OsSOS1 in shoots. It possibly harmed chloroplasts and influenced photorespiration processes, thus reducing NH4+ production from photorespiration. Under alkali stress, TC was able to maintain normal nitrogen metabolism, which might be important for resisting alkali stress., H. Wang, X. Lin, S. Cao, Z. Wu., and Obsahuje bibliografii
The ongoing process of climate change will result in higher temperatures during winter and therefore might increase the survival of overwintering invertebrates. However, the process may also lead to a reduction in snow cover and expose overwintering invertebrates to lower temperatures, which could result in higher mortality. During a field experiment, I investigated the effects of a reduction in snow cover on the survival of the ant Temnothorax crassispinus, which overwinters in nests located on the ground. Ant colonies differed in the survival rate of the workers in the experimental (from which snow cover was removed) and control group. In the control group, the survival rate was unrelated to colony size. However, in the experimental group, from which snow was removed after each heavy snowfall, worker survival was lower in small colonies. Such colony size related mortality may affect the fusion of colonies before winter. and Sławomir Mitrus.