1 - 3 of 3
Number of results to display per page
Search Results
2. Early morphologic alterations in renal artery wall and renal nerves in response to catheter-based renal denervation procedure in sheep: difference between single-point and multiple-point ablation catheters
- Creator:
- Miloš Táborský, David Richter, Zbyněk Tonar, Kubíková, T., Aleš Herman, Jan H. Peregrin, Červenková, L., Zuzana Husková, and Libor Kopkan
- Format:
- print, bez média, and svazek
- Type:
- article, články, journal articles, model:article, and TEXT
- Subject:
- Fyziologie člověka a srovnávací fyziologie, renální denervace, renal denervation, resistant hypertension, experimental model, 14, and 612
- Language:
- English
- Description:
- Renal sympathetic hyperactivity is critically involved in hypertension pathophysiology; renal denervation (RDN) presents a novel strategy for treatment of resistant hypertension cases. This study assessed effects of two RDN systems to detect acute intravascular, vascular and peri-vascular changes in the renal artery, and renal nerve alterations, in the sheep. The procedures using a single-point or multi-point ablation catheters, Symplicity FlexTM, Medtronic versus EnligHTNTM, St. Jude Medical were compared; the intact contralateral kidneys served as controls. Histopathological and immunohistochemical assessments were performed 48 h after RDN procedures; the kidney and suprarenal gland morphology was also evaluated. Special staining methods were applied for histologic analysis, to adequately score the injury of renal artery and adjacent renal nerves. These were more pronounced in the animals treated with the multi-point compared with the single-point catheter. However, neither RDN procedure led to complete renal nerve ablation. Forty-eight hours after the procedure no significant changes in plasma and renal tissue catecholamines were detected. The morphologic changes elicited by application of both RDN systems appeared to be dependent on individual anatomical variability of renal nerves in the sheep. Similar variability in humans may limit the therapeutic effectiveness of RDN procedures used in patients with resistant hypertension., M. Táborský, D. Richter, Z. Tonar, T. Kubíková, A. Herman, J. Peregrin, L. Červenková, Z. Husková, L. Kopkan., and Obsahuje bibliografii
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/ and policy:public
3. Renal sympathetic denervation improves cardiac dysfunction in rats with chronic pressure overload
- Creator:
- Li, Z.-Z., Jiang, H., Chen, D., Liu, Q., Geng, J., Guo, J.-Q., Sun, R.-H., Zhu, G.-Q., and Shan, Q.-J.
- Format:
- print, bez média, and svazek
- Type:
- article, články, model:article, and TEXT
- Subject:
- Fyziologie člověka a srovnávací fyziologie, renální denervace, renal denervation, renal sympathetic denervation, cardiac deysfunction, remodeling, 14, and 612
- Language:
- English
- Description:
- Varied causative and risk factors can lead to cardiac dysfunction. Cardiac dysfunction often evolves into heart failure by cardiac remodeling due to autonomic nervous system disturbance and neurohumoral abnormalities, even if the detriment factors are removed. Renal sympathetic nerve activity plays a pivotal regulatory role in neurohumoral mechanisms. The present study was designed to determine the therapeutic eff ects of renal sympathetic denervation (RSD) on cardiac dysfunction, fibrosis, and neurohumoral response in transverse aortic constriction (TAC) rats with chronic pressure overload. The present study demonstrated that RSD attenuated myocardial fibrosis and hypertrophy, and structural remodeling of the left atrium and ventricle, up -regulated cardiac β adrenoceptor (β -AR, including β 1 AR and β 2 AR) and sarco -endoplasmic reticulum Ca 2+ -ATP ase (SERCA) while down -regulated angiotensin II type 1 receptor (AT 1 R), and decreased plasma B -type natriuretic peptide (BNP), norepinephrine (NE) , angiotensin II (Ang II), and arginine vasopressin (AVP) levels in TAC rats with chronic pressure overload. We conclude that RSD attenuates myocardial fibrosis, the left atrial enlargement, and the left ventricular wall hypertrophy; inhibits the overdrive of the sympathetic ner vous system (SNS), renin- angiotensin -aldosterone system (RAAS), and AVP system in TAC rats with chronic pressure overload . RSD could be a promising non -pharmacological approach to control the progression of cardiac dysfunction., Z.-Z. Li, H. Jiang, D. Chen, Q. Liu, J. Geng, J.-Q. Guo, R.-H. Sun, G.-Q. Zhu, Q.-J. Shan., and Obsahuje bibliografii
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/ and policy:public