Chronic renal failure (CRF) is associated with high incidence of cardiovascular complications. To clarify pathogenesis of CRF numerous animal models have been developed. The aim of our work was to describe methodology of subtotal surgical renal ablation in rat and to characterize some biochemical and cardiovascular parameters of this animal model. Male rats underwent 5/6 surgical nephrectomy or sham operations in two steps. The following parameters were measured on day 10 and in week 10 after the surgery: plasma concentrations of creatinine and urea, blood pressure, resting heart rate, chronotropic response to atropine and metipranol, heart ventricles weight, contraction parameters and action potential duration in the left ventricle. Increased serum concentrations of creatinine and urea, decreased creatinine clearance, polyuria and alteration of the remnant kidney tissue were found in CRF rats. Changes in cardiovascular parameters identified after subtotal nephrectomy resembled alterations of cardiovascular system in uremic patients and included hypertension, elevated resting heart rate, diminished parasympathetic cardiac tone, hypertrophy of the left ventricle associated with weakened force of contraction, prolonged contraction and relaxation and shortening of action potential duration. These data suggest that the present model can be a useful tool in the study of CRF and its cardiovascular complications., J. Švíglerová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Renal sympathetic hyperactivity is critically involved in hypertension pathophysiology; renal denervation (RDN) presents a novel strategy for treatment of resistant hypertension cases. This study assessed effects of two RDN systems to detect acute intravascular, vascular and peri-vascular changes in the renal artery, and renal nerve alterations, in the sheep. The procedures using a single-point or multi-point ablation catheters, Symplicity FlexTM, Medtronic versus EnligHTNTM, St. Jude Medical were compared; the intact contralateral kidneys served as controls. Histopathological and immunohistochemical assessments were performed 48 h after RDN procedures; the kidney and suprarenal gland morphology was also evaluated. Special staining methods were applied for histologic analysis, to adequately score the injury of renal artery and adjacent renal nerves. These were more pronounced in the animals treated with the multi-point compared with the single-point catheter. However, neither RDN procedure led to complete renal nerve ablation. Forty-eight hours after the procedure no significant changes in plasma and renal tissue catecholamines were detected. The morphologic changes elicited by application of both RDN systems appeared to be dependent on individual anatomical variability of renal nerves in the sheep. Similar variability in humans may limit the therapeutic effectiveness of RDN procedures used in patients with resistant hypertension., M. Táborský, D. Richter, Z. Tonar, T. Kubíková, A. Herman, J. Peregrin, L. Červenková, Z. Husková, L. Kopkan., and Obsahuje bibliografii
Interesting and stimulating data about the effect of the perivascular adipose tissue size on atherogenesis are based mainly on CT findings. We studied this topic by directly analyzing perivascular adipose tissue in explanted hearts from patients undergoing transplantation. Ninety -six consecutive patients were included, including 58 with atherosclerotic coronary heart disease (CHD) and 38 with dilation cardiomyo pathy (DCMP). The area of perivascular fat, area of the coronary artery wall, and ratio of CD68 -positive macrophages within the perivascular fat and within the vascular wall were quantified by immunohistochemistry. There was no significant difference in th e perivascular adipose tissue size between the two groups. Nevertheless, there was a significantly higher number of macrophages in the coronary arterial wall of CHD patients. In addition, we found a close relationship between the ratio of macrophages in th e arterial wall and adjacent perivascular adipose tissue in the CHD group, but not in the DCMP group . According to our data interaction between macrophages in the arterial wall and macrophages in surrounding adipose tissue could be more important mechanism of atherogenesis than the size of this tissue itself., I. Kralova Lesna, Z. Tonar, I. Malek, J. Maluskova, L. Nedorost, J. Pirk, J. Pitha, V. Lanska, R. Poledne., and Obsahuje bibliografii
Prague hereditary hypercholesterolemic (PHHC) rat – rat strain crossbred from Wistar rats – is a model of hypercholesterolemia induced by dietary cholesterol. Importantly, no bile salts and/or antithyroid drugs need to be added to the diet together with cholesterol to induce hypercholesterolemia. PHHC rats have only modestly increased cholesterolemia when fed a standard chow and develop hypercholesterolem ia exceeding 5 mmol/l on 2 % cholesterol diet. Most of the cholesterol in hypercholesterolemic PHHC rats is found in VLDL that become enriched with cholesterol (VLDL-C/VLDL-TG ratio > 1.0). Concurrently, both IDL and LDL concentrations rise without any increase in HDL. PHHC rats do not markedly differ from Wistar rats in the activities of enzymes involved in intravascular remodelation of lipoproteins (lipoprotein and hepatic lipases and lecithin:cholesterol acyltransferase), LDL catabolism, cholesterol turnover rate and absorption of dietary cholesterol. The feeding rats with cholesterol diet results in development of fatty liver in spite of suppression of cholesterol synthesis. However, even though cholesterolemia in PHHC rats is comparable to human hypercholesterolemia, the PHHC rats do not develop atherosclerosis even after 6 months on 2 % cholesterol diet. Importantly, the crossbreeding experiments documented that hypercholesterolemia of PHHC rats is polygenic. To identify the genes that may be involved in pathogenesis of hypercholesterolemia in this strain, the studies of microarray gene expression in the liver of PHHC rats are currently in progress., J. Kovář ... [et al.]., and Obsahuje seznam literatury