The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed., Y. Wang, L. Shao, J. Wang, H. Ren, H. Liu, Q. M. Zhang, Q. F. Guo, X. W. Chen., and Seznam literatury
a1_Chromolaena odorata is a widespread exotic weed in southern China and other regions of the world. To better understand its invasive strategies, we compared leaf pigment contents and gas-exchange traits of the invader with its two coexisting species (native Urena lobata and invasive Bidens pilosa) under combined conditions of irradiance (full, medium, and low) and nitrogen (full, medium, and low) supplies. The chlorophyll (Chl) a+b content of U. lobata was the highest and the Chl a/b ratio of C. odorata was the lowest among the three weed species. In most treatments, leaf pigment, light-saturated photosynthetic rate (P max), and light saturation point (LSP) of all the species increased, while their Chl a/b ratios decreased with the increasing nitrogen. The P max and LSP of U. lobata were greater than those of the coexisting weeds under full irradiance (FI), but significantly declined with the decreasing irradiance. The invasive weeds, especially C. odorata, showed lower P max and LSP under FI, but they showed slight decrease under low irradiance. Compared to U. lobata, C. odorata exhibited the lower light compensation point (LCP) in most treatments, higher LSP under low and medium irradiance, and lower dark respiration rate under FI. In addition, all the three species showed similar responses to different irradiance and nitrogen conditions, mean phenotypic plasticity index (MPPI) of most photosynthetic variables of the two invasive species was lower than that of U. lobata. These results suggested that C. odorata behaved as a facultative shadetolerant weed, being able to grow in moderately sheltered environments; the lower MPPI might be one of the important competitive strategies during its invasion. However, its invasion should be limited to some very shady habitats., a2_In the field, control should be mainly directed against populations growing in the open or nutrient-rich habitats, where its expansion speed could be much faster. Deep shade by intact canopies or luxuriant forests might be an effective barrier against its invasion., G. M. Quan, D. J. Mao, J. E. Zhang, J. F. Xie, H. Q. Xu, M. An., and Obsahuje seznam literatury
The effects of elevated growth temperature (ambient + 3.5°C) and CO2 (700 μmol mol-1) on leaf photosynthesis, pigments and chlorophyll fluorescence of a boreal perennial grass (Phalaris arundinacea L.) under different water regimes (well watered to water shortage) were investigated. Layer-specific measurements were conducted on the top (younger leaf) and low (older leaf) canopy positions of the plants after anthesis. During the early development stages, elevated temperature enhanced the maximum rate of photosynthesis (Pmax) of the top layer leaves and the aboveground biomass, which resulted in earlier senescence and lower photosynthesis and biomass at the later periods. At the stage of plant maturity, the content of chlorophyll (Chl), leaf nitrogen (NL), and light response of effective photochemical efficiency (ΦPSII) and electron transport rate (ETR) was significantly lower under elevated temperature than ambient temperature in leaves at both layers. CO2 enrichment enhanced the photosynthesis but led to a decline of NL and Chl content, as well as lower fluorescence parameters of ΦPSII and ETR in leaves at both layers. In addition, the down-regulation by CO2 elevation was significant at the low canopy position. Regardless of climate treatment, the water shortage had a strongly negative effect on the photosynthesis, biomass growth, and fluorescence parameters, particularly in the leaves from the low canopy position. Elevated temperature exacerbated the impact of water shortage, while CO2 enrichment slightly alleviated the drought-induced adverse effects on P max. We suggest that the light response of ΦPSII and ETR, being more sensitive to leaf-age classes, reflect the photosynthetic responses to climatic treatments and drought stress better than the fluorescence parameters under dark adaptation. and Z.-M. Ge ... [et al.].