The three larval instars of Megadytes (Paramegadytes) glaucus (Brullé, 1838) and the third-instar larvae of M. (Bifurcitus) magnus Trémouilles & Bachmann, 1980 and M. (Trifurcitus) robustus (Aubé, 1838) are described and illustrated for the first time, with particular emphasis on the morphometry and chaetotaxy. A key to the subgenera of Megadytes Sharp, 1882 is presented. In a cladistic analysis of third-instar larval characters, Megadytes is resolved as non-monophyletic; the species of Cybistrini studied, except those included in the subgenus Trifurcitus Brinck, 1945, share three synapomorphies: (i) medial projection of frontoclypeus truncate apically, with many apical setae directed forwards; (ii) lateral projections of frontoclypeus project forwards, not flattened; and (iii) median process of prementum rounded apically. The clade composed of the subgenera Megadytes s. str., Paramegadytes Trémouilles & Bachmann, 1980 and Bifurcitus Brinck, 1945 along with Cybister lateralimarginalis (De Geer, 1774) is well supported by three synapomorphies: (i) head capsule subrectangular and (ii) distal third of mandible more strongly projected inwards, (iii) with a ring of long, hair-like setae. The two species of the subgenus Paramegadytes have bilobed lateral projections on the frontoclypeus. Megadytes (M.) marginithorax (Perty, 1830) is characterized by the very narrow notches between the medial and lateral projections of frontoclypeus. No synapomorphies were discovered to group together the two species of the subgenus Bifurcitus.
We present a developmental study focusing on the development of coloration patterns in a subgroup of Neotropical cichlids, the subfamily Cichlasomatinae. Based on the presented coloration ontogenetic series of 40 species we show that developmental information is a necessary prerequisite for any serious attempts in understanding adult coloration patterns. The center of our contribution is a detailed description of coloration ontogenies in a selected sample of cichlids and their discussion in a much wider taxonomical sampling. The pigmentation pattern ontogeny is specifically used to determine developmental homology of individual vertical bars. Early ontogeny is documented from the onset of the free-swimming period, which is also used as a point of reference for possible heterochronic shifts as presented here. A single universal process is responsible for the transformation of longitudinal melanophore migration lines into vertical bars, which form the dominant elements of adult coloration of most cichlids. Adult vertical bars vary interspecificaly in their numbers, whereas their ontogenetic precursors are stable in number across all surveyed species. The diversity of adult barring patterns is produced by differential fusions of a conserved number of developing bars, from which the different taxon specific numbers of adult bars develop. The possibility of determining individual homology of cichlid vertical bars is a prerequisite for the use of coloration pattern characters in cichlid phylogenetic studies. Several ontogenetic characters are formulated as synapomorphic at various systematic levels.
The Natal multimammate mouse, Mastomys natalensis, occurs throughout sub-Saharan Africa. Mitochondrial phylogenetics indicate this species was fragmented during the Pleistocene, forming six matrilineage phylogroups: A-I, A-II, A-III, B-IV, B-V, B-VI with distinct ranges. All except the A-III lineage are identified as natural reservoirs of mammarenaviruses. M. natalensis A-III is found in western Ethiopia and is the only lineage reported in the country. While screening 203 small mammal samples from Dhati Welel National Park for mammarenaviruses, we detected mammarenavirus RNA in nine samples, eight from M. natalensis and one from M. awashensis. A sequence similarity search and phylogenetic analysis confirmed the M. natalensis mitochondrial DNA belongs to the A-III lineage. We characterised the complete virus genome, which showed typical mammarenavirus organisation. Phylogenetic analysis indicated it clusters with Gairo virus found in M. natalensis B-IV in Tanzania, while showing sufficient divergence from other mammarenaviruses to be considered as a new species, for which we proposed the name Dhati Welel. Additional sampling in the M. natalensis A-III phylogeographic range should help determine whether the detection of the virus in M. awashensis represents a local spill-over or if the virus circulates in both Mastomys species.
This paper sums up the results of light microscopical, ultrastructural and molecular studies of five strains of amoeboid organisms isolated as endocommensals from coelomic fluid of sea urchins, Sphaerechinus granularis (Lamarck), collected in the Adriatic Sea. The organisms are reported as Didymium-like myxogastrids. Of the life-cycle stages, the attached amoeboids, flagellated trophozoites, cysts and biflagellated swarmers are described. Formation of fruiting bodies was not observed. Although phylogenetic analyses of SSU rDNA sequences indicated a close relationship with Hyperamoeba dachnaya, our sea-urchin strains have not been assigned to the genus Hyperamoeba Alexeieff, 1923. The presence of either one or two flagella reported in phylogenetically closely related organisms and mutually distant phylogenetic positions of strains declared as representatives of the genus Hyperamoeba justify our approach. Data obtained in this study may be useful in future analyses of relationships of the genera Didymium, Hyperamoeba, Physarum and Pseudodidymium as well as in higher-order phylogeny of Myxogastrea.
The bug family Nabidae (Heteroptera) includes taxa showing either a low chromosome number 2n = 16 + XY or high chromosome numbers 2n = 26 or 32 + XY. In order to reveal the direction of karyotype evolution in the family, a molecular phylogeny of the family was created to reveal the taxon closest to the ancestral type and hence the ancestral karyotype. The phylogeny was based on a partial sequence of the 18S rDNA gene of both high and low chromosome number species belonging to the subfamilies Prostemmatinae and Nabinae. Phylogeny created by the Neighbour Joining method separated the subfamilies, Prostemmatinae and Nabinae, which form sister groups at the base of this phylogenetic tree, as well as within the Nabinae, tribes Nabini and Arachnocorini. Combining karyosystematic data with the phylogeny of the family indicated that the ancestral karyotype was a high chromosome number, consisting of 2n = 32 + XY. During the course of evolution changes have occurred both in meiotic behaviour of the sex chromosomes and in the number of autosomes. The direction of karyotype evolution was from a high to low autosome number. Abrupt decreases in the number of autosomes have occurred twice; firstly when the tribe Arachnocorini differentiated from the main stem in the subfamily Nabinae and secondly within the tribe Nabini, when within the genus Nabis 2n = 16 + XY species diverged from the 2n = 32 + XY species. A scheme of the sequence of events in karyotype evolution during the evolution of the Nabidae is presented.
A new species of Lymanopoda Westwood, a cloud forest Neotropical genus of Satyrinae, is described from the páramo grasslands on an isolated, peripheral massif in the Colombian Central Cordillera of the Andes: L. flammigera Pyrcz, Prieto & Boyer, sp. n. The genus Lymanopoda is species-rich (approx. 65 species) and its alpha taxonomy is relatively well researched. Relationships within the genus using molecular data have also been explored. The new species is outstanding for its golden yellow colour in males, not found in any other neotropical Satyrinae. Cladograms were constructed based on COI sequences of 47 species of Lymanopoda (~ 70% of the known species) including 17 from Colombia. The new species segregates in the "tolima" clade, which comprises four other high altitude Colombian species, as well as two from Ecuador. However, it is the comparative analysis of male genitalia, in particular the superuncus and valvae, which identified its closest relatives, thus confirming that genital characters can help refine molecular phylogenies. In addition to identifying species using mitochondrial DNA (mtDNA barcodes), nucleotide sites with unique fixed states used to identify nine species of Lymanopoda from Colombia are also presented., Tomasz W. Pyrcz, Carlos Prieto, Pierre Boyer, Jadwiga Lorenc-Brudecka., and Obsahuje bibliografii
The scydmaenine tribe Eutheiini is recorded from Australia for the first time. Paraneseuthia carltoni sp. n. and P. booloumba sp. n. are described and illustrated, both from Queensland. In a parsimony-based phylogenetic analysis using adult morphological characters including genital features, the Australian species together with the Melanesian type species of Paraneseuthia Franz, P. peckorum Franz, were found to be more closely related to East Palearctic congeners than to most of the Paraneseuthia in the Sunda-Papuan area. The topology of the tree and biogeographic data suggest a Sundaland origin of this genus, with three major dispersal routes from a center located in present-day Sumatra: (i) north-eastern colonization of the Palearctic Far East, via a continental or island-arc route; (ii) south-eastern dispersal to East Australia; and (iii) eastern dispersal to Melanesia, possibly via the Quaternary Outer-Melanesian Arc. The important role of dispersal in the evolution of Paraneseuthia is supported by the presence of this genus on isolated volcanic islands, such as the southern Moluccas and Fiji, which were never connected to larger land masses. and Paweł Jałoszyński.
In an effort to expand knowledge of Clade 3-one of the ten clades that compose the non-monophyletic order 'Tetraphyllidea' all current members of which parasitise orectolobiform sharks-we targeted species of orectolobiform sharks that had not previously been examined for 'tetraphyllidean' cestodes. That work led to the discovery of three new species off Australia and Taiwan. Ambitalveolus gen. n. was erected to accommodate these species. Ambitalveolus costelloae gen. n. et sp. n., Ambitalveolus kempi sp. n., and Ambitalveolus penghuensis sp. n. differ from one another in scolex size, genital pore position, and number of marginal loculi, proglottids, and testes. Among 'tetraphyllideans', the new genus most closely resembles the two other genera in Clade 3. It differs from Carpobothrium Shipley et Hornell, 1906 in lacking anterior and posterior flap-like extensions of its bothridia; instead, its bothridia are essentially circular. It differs from Caulopatera Cutmore, Bennett et Cribb, 2010 in that its vitelline follicles are in two lateral bands, rather than circum-medullary, and in that its bothridia bear, rather than lack, conspicuous marginal loculi. A key to the three genera in Clade 3 is provided. A phylogenetic analysis including new sequence data for one of the three new species of Ambitalveolus gen. n., the only species of Caulopatera, and all four described species and one undescribed species of Carpobothrium supports previously hypothesised close affinities between Caulopatera and Carpobothrium, with the new genus as their sister group. This is the first report of 'tetraphyllidean' cestodes from the orectolobiform shark family Brachaeluridae Applegate. The association of the new species with orectolobiform sharks is consistent with those of the other members of Clade 3. However, whereas species of Carpobothrium and Caulopatera parasitise members of the hemiscylliid genus Chiloscyllium Müller et Henle, species of Amitalveolus gen. n. parasitise members of the Brachaeluridae and Orectolobidae Gill.
Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phylogenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues., D. James Harris, Ali Halajian, Joana L. Santos, Lourens H. Swanepoel, Peter John Taylor, Raquel Xavier., and Obsahuje bibliografii
Concordant differences in morphology, phenology and RAMS markers, as well as in sequenced mtDNA (COI, COII, cytb) and nuclear DNA (ITS2) fragments, indicate that Dolerus asper Zaddach, 1859 and Dolerus brevicornis Zaddach, 1859 are valid species. On the basis of morphology, molecular markers, and distributional records, both species are distinct from Dolerus gibbosus Hartig, 1837 (= Dolerus planatus Hartig, 1837). Taxonomy of the species is clarified and the neotypes of Dolerus asper Zaddach, 1859 and Dolerus brevicornis Zaddach, 1859 are designated. The synonymies of Dolerus asper Zaddach, 1859, to Dolerus planatus Hartig, 1837 and Dolerus derzavini Malaise, 1931, spec. rev. to D. asper Zaddach, 1859 are abandoned. Dolerus carbonarius Zaddach, 1859 and Dolerus fumosus Zaddach, 1859 are considered to be species inquirendae. Phylogenetic analyses of the ITS2 fragment and fragments of ITS2 + COI and ITS2 + COII yielded the topology [D. asper, (D. brevicornis, D. gibbosus)], while those of all other markers and their combinations resulted in the topology [D. brevicornis, (D. asper, D. gibbosus)]. In the latter hypothesis the clade asper + gibbosus is also supported by structural synapomorphies.