The age-dependent changes in baroreflex control of heart rate were studied in inbred Dahl rats. At the age of 8 weeks the baroreflex slope was significantly greater in salt-resistant (R/Jr) than in salt-sensitive (S/Jr) rats fed a low- salt diet. The reverse was true in 16-week-old animals. High salt intake (8 % NaCI diet for 4 weeks) suppressed baroreflex efficiency in both age groups of S/Jr animals whereas no effects occurred in R/Jr rats. Baroreflex slope was, however, significantly lower in young S/Jr rats with a severe form of salt hypertension than in adult salt-loaded S/Jr rats in which only a moderate blood pressure elevation was observed.
STR/N is an inbred strain of mice which is known to exhibit extreme polydipsia and polyuria. We previously found central administration of angiotensin II enhanced cardiovascular responses in STR/N mice than normal mice, suggesting that STR/N mice might exhibit different cardiovascular responses. Therefore, in this study, we investigated daily mean arterial blood pressure and heart rate, and changes in the baroreceptor-heart rate reflex in conscious STR/N mice and control (ICR) mice. We found that variability in daily mean arterial blood pressure and heart rate was significantly larger in STR/N mice than in ICR mice (p<0.05). There was a stronger response to phenylephrine (PE) in STR/N mice than in ICR mice. For baroreceptor reflex sensitivity, in the rapid response period, the slopes of PE and sodium nitroprusside (SNP) were more negative in STR/N mice than in ICR mice. In the later period, the slopes of PE and SNP were negatively correlated between heart rate and blood pressure in ICR mice, but their slopes were positively correlated in STR/N mice. These results indicated that STR/N mice exhibited the different cardiovascular responses than ICR mice, suggesting that the dysfunction of baroreceptor reflex happened in conscious STR/N mice., C. P. Chu, B. R. Cui, H. Kannan, D. L. Qiu., and Obsahuje bibliografii
Baroreflex control of heart rate was studied in inbred salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) Dahl rats that were subjected to chronic dietary sodium chloride loading (for 4 weeks) either in youth or only in adulthood, i.e. from the age of 4 or 12 weeks. Using phenylephrine administration to pentobarbital-anesthetized male rats we have demonstrated the decreased baroreflex sensitivity (lower slope for reflex bradycardia) in young prehypertensive SS/Jr rats fed a low-salt diet as compared to age-matched SR/Jr animals. High salt intake further suppressed baroreflex sensitivity in young SS/Jr but not in SR/Jr rats. Baroreflex sensitivity decreased with age in SR/Jr rats, whereas it increased in SS/Jr rats fed a low-salt diet. Thus at the age of 16 weeks baroreflex sensitivity was much higher in SS/Jr than in SR/Jr animals. High salt intake lowered baroreflex sensitivity even in adult SS/Jr rats without affecting it in adult SR/Jr rats. Nevertheless, baroreflex sensitivity was significantly lower in young SS/Jr rats with a severe salt hypertension than in adult ones with a moderate blood pressure elevation. It is concluded that the alterations of baroreflex sensitivity in young inbred SS/Jr rats (including the response to high salt intake) are similar to those described earlier for outbred salt-sensitive Dahl rats. We have, however, disclosed contrasting age-dependent changes of baroreflex sensitivity in both inbred substrains of Dahl rats., J. Nedvídek, J. Zicha., and Obsahuje bibliografii
In rats, neonatal administration of monosodium glutamate (MSG) causes serious damage in some hypothalamic and circumventricular areas. The resulting loss of appropriate neurons important for the regulation of blood pressure (BP) may modulate cardiovascular system receptivity in these animals. In the present study, the reactivity of the cardiovascular system to intravenous injection of ai-adrenergic receptor agonist phenylephrine (200 ^g/kg/ml) and angiotensin II (500 ng/kg in 0.6 ml for 2 min) was investigated in adult rats which had been neonatally treated with MSG or vehicle. BP parameters measured directly in conscious cannulated rats were continuously registered using a computerized system. Under basal conditions, MSG-treated rats had slightly lower systolic, diastolic and mean BP with significant differences in pulse pressure (systolic - diastolic BP). In MSG-treated animals, the maximal increase of mean arterial BP after phenylephrine and the duration of BP elevation after both agents were significantly reduced. Slopes of the linear portion of baroreceptor function curves in control and MSG-treated rats did not differ significantly, indicating that baroreflex efficacy was unchanged. The results obtained by perfusion of the hindlimb vascular bed in situ showed that the pressure responses to increasing doses of noradrenaline in MSG-treated rats were reduced. These findings demonstrate that neonatal treatment of rats with MSG lowers the responsiveness of the cardiovascular system, particularly in response to a-adrenergic stimulation. It is suggested that the attenuation of cardiovascular reactivity in MSG-treated rats is, at least partly, caused by diminished vascular responsiveness.