The physiological and biochemical behaviour of rice (Oryza sativa, var. Jyoti) treated with copper (II) oxide nanoparticles (CuO NPs) was studied. Germination rate, root and shoot length, and biomass decreased, while uptake of Cu in the roots and shoots increased at high concentrations of CuO NPs. The accumulation of CuO NPs was observed in the cells, especially, in the chloroplasts, and was accompanied by a lower number of thylakoids per granum. Photosynthetic rate, transpiration rate, stomatal conductance, maximal quantum yield of PSII photochemistry, and photosynthetic pigment contents declined, with a complete loss of PSII photochemical quenching at 1,000 mg(CuO NP) L-1. Oxidative and osmotic stress was evidenced by increased malondialdehyde and proline contents. Elevated expression of ascorbate peroxidase and superoxide dismutase were also observed. Our work clearly demonstrated the toxic effect of Cu accumulation in roots and shoots that resulted in loss of photosynthesis., M. V. J. Da Costa, P. K. Sharma., and Obsahuje seznam literatury
The paper deals with physical mechanisms of disintegration of solid particles in new device called WJM-“Water Jet Mill” and a global description of the said system includes internal milling cycles and particle size separators of a liquid suspension. A disintegration agent here is a high energy liquid jet influence with outlet velocity about 660 m∙s-1 and high level of cavitation in disintegration zones. Dominate disintegration mechanism affected by cavitation bubble implosions direct on a particle surface inside a liquid suspension brings about a particle refinement to the level under 100 nm followed with a small mechanical damage of ar impact target. in the paper, results of aggregates morphology of silicon nanoparticles prepared using disintegrator WJM have been presented via separated chapter of Atomic Force Microscopy AFM, Scanning Electronic Microscopy SEM, confocal optical microscopy, and laser diffraction. and Práce prezentuje fyzikální mechanismy desintegrace pevných částic v novém zařízení, pracovně nazývaném WJM (Water Jet Mill) a globální popis uvedeného systému včetně interních mlecích cyklů a rozměrových separátorů partikulární kapalinové suspenze. Desintegračním činitelem je zde působení vysokoenergetického kapalinového paprsku s výtokovou rychlostí cca 660 m∙s-1 a vysokou mírou kavitace v desintegračních zónách. Z dosahované míry zdrobnění až do oblasti pod 100 nm a z malého mechanického poškození impaktního terče vyplývá dominantní mechanismus dezintegrace implozí kavitačních bublin přímo na povrchu částic uvnitř kapalinové suspenze. V samostatných oddílech mikroskopie atomárních sil AFM, skenující elektronové mikroskopie SEM, konfokální optické mikroskopie a laserové difrakce jsou následně prezentovány výsledky analýzy morfologie agregátů nanočástic křemíku připravených v desintegrátoru WJM.
Surface-enhanced Raman spectroscopy (SERS) traditionally requires special substrates, typically in the form of noble metal nanostructures, and facilitates detection of molecules at extremely low concentrations. In this work, we present fabrication of novel type of SERS active substrates that combine promising properties of metal nanostructures and graphene, and demonstrate their application in biosensing. The graphene-metal hybrids are fabricated by guided assembly of colloidal gold nanoparticles on e-beam pre-patterned silicon substrate. Gold nanoparticles are then subsequently covered with graphene. The usefulness of such structures in SERS biosensing is tested upon detection of Rhodamine 6G molecules. and Povrchem zesílená Ramanova spektroskopie (SERS) tradičně využívá speciálně upravených povrchů, nejčastěji ve formě kovových nanostruktur, a umožňuje detekci látek o velmi nízkých koncentracích. Tato práce pojednává o přípravě nového typu substrátu vhodného pro metodu SERS kombinujícího výhodné vlastnosti jak kovových struktur, tak i grafenu. Grafen-kovové hybridní nanostruktury byly vyrobeny řízenou depozicí zlatých kuliček na elektronovým svazkem ozářený křemíkový substrát a následným překrytím vrstvou grafenu. Možnost využití výsledných struktur v oblasti biosenzorů byla dále testována při detekci molekul rhodaminu nanesených na jejich povrch.