Neotectonics of the Carpathians used to be studied extensively, particular attention being paid to the effects of large-scale domal uplifts and open folding above marginal zones of thrusts and imbricated map-scale folds, and rarely to the characteristics of young faulting. Neotectonic faults tend to be associated with the margins of the Orava-Nowy Targ Basin, superposed on the boundary between the Inner and Outer Western Carpathians, as well as with some regions within the Outer Carpathians. The size of Quaternary tilting of the Tatra Mts. on the sub-Tatric fault were estimated at 100 to 300 m, and recent vertical crustal movements of this area detected by repeated precise levelling are in the range of 0.4-1.0 mm/yr in rate. Minor vertical block movements of oscillatory character (0.5-1 mm/yr) were detected along faults cutting the Pieniny Klippen Belt owing to repeated geodetic measurements performed on the Pieniny geodynamic test area. In the western part of the Western Outer Carpathians, middle and late Pleistocene reactivation of early Neogene thrust surfaces was suggested. Differentiated mobility of reactivated as normal Miocene faults (oriented (N-S to NNW-SSE and NNE-SSW) in the medial portion of the Dunajec River drainage basin appears to be indicated by the results of long-profile analyses of deformed straths, usually of early and middle Pleistocene age. Quaternary uplift of the marginal part of the Beskid Niski (Lower Beskidy) Mts. (W-E to WNW-ESE), in the mid-eastern part of the Outer Western Carpathians of Poland, was estimated at 100-150 m, including no more than 40 m of uplift after the Elsterian stage. The state of research into young faulting of the Outer Carpathians of Poland is still far from sufficient., Witold Zuchiewicz., and Obsahuje bibliografii
We analysed a nearly 133-km-long portion of the Sudetic Marginal Fault (SMF) in Poland (99.7 km) and the Czech Republic (33.8 km), comprised between Złotoryja in the NW and Jesenik in the SE. The fault trace has been subdivided into fifteen segments showing different orientation (N29°W to N56°W, and even N111°W SE of Złoty Stok), geological setting, length (8.8-22.9 km in Poland and 1.4-7.5 km in the Czech Republic), and height of the fault- and fault-line scarps (5-75 m to 200-360 m). Orientation of the entire fault trace approaches N41° W, and the mountain front sinuosity amounts to 1.051. Individual fault segments bear a flight of two to five tiers of triangular facets, showing differentiated state of preservation and degree of erosional remodelling. The highest triangular facets are confined to Rychlebské (Złote) and Sowie Mts. This tiering points to at least five episodes of uplift of the SMF footwall, starting shortly after 31 Ma, i.e. after basalts of the Sichów Hills area were displaced by the fault, and most probably postdating 7-5 Ma time interval, during which rapid cooling and exhumation of the Sowie Góry Mts. massif took place. Morphometric parameters of 244 small catchment areas of streams that dissect the fault scarp include, i.a. elongation, relief, and average slope of individual catchment areas, together with values of the valley flo or width to valley height ratios. These figures point to moderate tectonic activity of the SMF and allow us to conclude about Quaternary uplift, particularly important in the Sowie and Rychlebské (Złote) segments., Janusz Badura, Witold Zuchiewicz, Petra Štěpančiková, Bogusław Przybylski, Bernard Kontny and Stefan Cacoń., and Obsahuje bibliografické odkazy