In this paper, results from the long-term monitoring of two deep-seated slope deformations are presented. These deformations are considered typical of the types of landslide that occur in the high mountains of the Western Carpathians. The localities are situated in similar geological settings and this has enabled direct comparison of their development over the past 30 years. The monitoring has been undertaken using the extensometric gauges, TM71. At the Parohy Site, results from the scarp area show a significant vertical displacement trend of 0.07 mm per year. At the Štrochy Site, results from the crown area show a horizontal crack opening trend of 0.015 mm per year. Monitoring is ongoing at both sites., Miloš Briestenský, Blahoslav Košťák, Josef Stemberk and Jozef Vozár., and Obsahuje bibliografii
Neotectonics of the Carpathians used to be studied extensively, particular attention being paid to the effects of large-scale domal uplifts and open folding above marginal zones of thrusts and imbricated map-scale folds, and rarely to the characteristics of young faulting. Neotectonic faults tend to be associated with the margins of the Orava-Nowy Targ Basin, superposed on the boundary between the Inner and Outer Western Carpathians, as well as with some regions within the Outer Carpathians. The size of Quaternary tilting of the Tatra Mts. on the sub-Tatric fault were estimated at 100 to 300 m, and recent vertical crustal movements of this area detected by repeated precise levelling are in the range of 0.4-1.0 mm/yr in rate. Minor vertical block movements of oscillatory character (0.5-1 mm/yr) were detected along faults cutting the Pieniny Klippen Belt owing to repeated geodetic measurements performed on the Pieniny geodynamic test area. In the western part of the Western Outer Carpathians, middle and late Pleistocene reactivation of early Neogene thrust surfaces was suggested. Differentiated mobility of reactivated as normal Miocene faults (oriented (N-S to NNW-SSE and NNE-SSW) in the medial portion of the Dunajec River drainage basin appears to be indicated by the results of long-profile analyses of deformed straths, usually of early and middle Pleistocene age. Quaternary uplift of the marginal part of the Beskid Niski (Lower Beskidy) Mts. (W-E to WNW-ESE), in the mid-eastern part of the Outer Western Carpathians of Poland, was estimated at 100-150 m, including no more than 40 m of uplift after the Elsterian stage. The state of research into young faulting of the Outer Carpathians of Poland is still far from sufficient., Witold Zuchiewicz., and Obsahuje bibliografii
Two geodynamic test transects across the Polish segment of the Western Carpathians, crossing the Orava Basin in the west (KO) and the Pieniny Klippen Belt and Magura Nappe along the Dunajec River valley in the east (DD), are presented. Multidisciplinary studies conducted along these transects incl uded gravimetric, geodetic, geologic and morphostructural investigations. Gravimetric and geodetic results appear to suggest recent subsidence of the Orava Basin, particularly intensive in the Wróblówka Graben, confirming conclusions derived from geomorphic analyses. Data ob tained for the Dunajec River transect do not show any particular differentiation among individual benchmarks, what can point to either minor uplift of the entire area (already suggested by the results of geomorphic and morphotectonic studies), minimal differences between successive slices of the Magura Nappe and the Pieniny Klippe n Belt, or both. Horizontal displacements of benchmarks, different for the KO and DD transects, towa rds the west and SW as well east and SE, respectively, can result from general uplift of the area comprised between these transects, i.e. the Gorce Mts., Monika Łój, Janusz Madej, Sławomir Porzucek and Witold Zuchiewicz., and Obsahuje bibliografické odkazy
Fluvial archives of the Polish Carpathians bear a record of both climatic and tectonic signatures. The former consist in cyclic development of terrace covers interfingering with and/or overlain by soliluction and slopewash sediments; the latter include disturbances within strath long profiles and differentiated size of erosional downcutting. Valleys of the Outer Carpathians bear five to nine terrace steps of Pleistocene age. Most of these terraces are strath or complex-response ones; the Weichselian and Holocene steps are usually cut-and-fill landforms, except those located in the neotectonically elevated structures characterized by the presence of young straths. Long profiles of individual strath terraces frequently show divergence, convergence, upwarping, downwarping, or faulting that can be indicative of young tectonic control. Moreover, the size and rate of dissection of straths of comparable age are different in different morphotectonic units; a feature pointing to variable pattern of Quaternary uplift. Rates of river downcutting result mainly from climatic changes throughout the glacialinterglacial cycles, but their spatial differentiation appears to be influenced by tectonic factors as well. Examples based on detailed examination of deformed straths and fluvial covers in selected segments of the Polish Carpathian rivers appear to indicate Quaternary reactivation of both normal and thrust bedrock faults. The latter are mostly confined to the eastern portion of the Outer Carpathians. The Early Pleistocene, Holsteinian and Eemian stages of reactivated faulting dominated throughout the study area., Witold Zuchiewicz., and Obsahuje bibliografii