Mitochondrial dysfunction is currently acknowledged as a central
pathomechanism of most common diseases of the 21st century.
Recently, the assessment of the bioenergetic profile of human
peripheral blood cells has emerged as a novel research field with
potential applications in the development of disease biomarkers.
In particular, platelets have been successfully used for
the ex vivo analysis of mitochondrial respiratory function in
several acute and chronic pathologies. An increasing number of
studies support the idea that evaluation of the bioenergetic
function in circulating platelets may represent the peripheral
signature of mitochondrial dysfunction in metabolically active
tissues (brain, heart, liver, skeletal muscle). Accordingly,
impairment of mitochondrial respiration in peripheral platelets
might have potential clinical applicability as a diagnostic and
prognostic tool as well as a biomarker in treatment monitoring.
The aim of this minireview is to summarize current information in
the field of platelet mitochondrial dysfunction in both acute and
chronic diseases.
In contrast to the well-established anti-apoptotic effect of Bcl-2 protein, we have recently demonstrated that Bcl-2 overexpression by vaccinia virus causes apoptosis in BSC-40 cells, while it prevents apoptosis in HeLa G cells. Given the key role of mitochondria in the process of apoptosis, we focused on effects of Bcl-2 expression on mitochondrial energetics of these two cell lines. In this study we present data indicating that BSC-40 cells derive their ATP mainly from oxidative phosphorylation whereas HeLa G cells from glycolysis. More importantly, we show that in both cell lines, Bcl-2 inhibits mitochondrial respiration and causes a decrease of the ATP/ADP ratio. However, it appears that BSC-40 cells cannot sustain this decrease and die, while HeLa G cells survive, being adapted to the low ratio of ATP/ADP maintained by glycolysis. Based on this observation, we propose that the outcome of Bcl-2 expression is determined by the type of cellular ATP synthesis, namely that Bcl-2 causes apoptosis in cells relying on oxidative phosphorylation., M. Vrbacký, J. Krijt, Z. Drahota, Z. Mělková., and Obsahuje bibliografii
Five-sixths nephrectomy is a widely used experimental model of chronic kidney disease (CKD) that is associated with severe mitochondrial dysfunction of the remnant tissue. In this study, we assessed the effect of CKD on mitochondrial respiration separately in the rat kidney cortex and medulla 10 weeks after induction of CKD by subtotal 5/6 nephrectomy (SNX). Mitochondrial oxygen consumption was evaluated on mechanically permeabilized samples of kidney cortex and medulla using high-resolution respirometry and expressed per mg of tissue wet weight or IU citrate synthase (CS) activity. Mitochondrial respiration in the renal cortex of SNX rats was significantly reduced in all measured respiratory states if expressed per unit wet weight and remained lower if recalculated per IU citrate synthase activity, i.e. per mitochondrial mass. In contrast, the profound decrease in the activity of CS in SNX medulla resulted in significantly elevated respiratory states expressing the OXPHOS capacity when Complexes I and II or II only are provided with electrons, LEAK respiration after oligomycin injection, and Complex IV-linked oxygen consumption per unit CS activity suggesting compensatory hypermetabolic state in remaining functional mitochondria that is not sufficient to fully compensate for respiratory deficit expressed per tissue mass. The results document that CKD induced by 5/6 nephrectomy in the rat is likely to cause not only mitochondrial respiratory dysfunction (in the kidney cortex), but also adaptive changes in the medulla that tend to at least partially compensate for mitochondria loss.
The objective of the present study was to evaluate platelet mitochondrial oxygen consumption using high-resolution respirometry (HRR) and metabolic flux analysis (MFA) and to verify the effect of advanced age on these parameters. HRR was used to analyze permeabilized and intact platelets, MFA to measure oxygen consumption rates (OCR), extracellular acidification rates (ECAR) and ATP production rate in intact fixed platelets. Two groups of healthy volunteers were included in the study: YOUNG (20-42 years, n=44) and older adults (OLD; 70-89 years; n=15). Compared to YOUNG donors, platelets from group OLD participants displayed significantly lower values of oxygen consumption in the Complex II-linked phosphorylating and uncoupled states and the Complex IV activity in HRR protocols for permeabilized cells and significantly lower resting and uncoupled respirations in intact cells when analyzed by both methods. In addition, mitochondrial ATP production rate was also significantly lower in platelets isolated from older adults. Variables measured by both methods from the same bloods correlated significantly, nevertheless those acquired by MFA were higher than those measured using HRR. In conclusion, the study verifies compromised mitochondrial respiration and oxidative ATP production in the platelets of aged persons and documents good compatibility of the two most widely used methods for determining the global performance of the electron-transporting system, i.e. HRR and MFA