In contrast to the well-established anti-apoptotic effect of Bcl-2 protein, we have recently demonstrated that Bcl-2 overexpression by vaccinia virus causes apoptosis in BSC-40 cells, while it prevents apoptosis in HeLa G cells. Given the key role of mitochondria in the process of apoptosis, we focused on effects of Bcl-2 expression on mitochondrial energetics of these two cell lines. In this study we present data indicating that BSC-40 cells derive their ATP mainly from oxidative phosphorylation whereas HeLa G cells from glycolysis. More importantly, we show that in both cell lines, Bcl-2 inhibits mitochondrial respiration and causes a decrease of the ATP/ADP ratio. However, it appears that BSC-40 cells cannot sustain this decrease and die, while HeLa G cells survive, being adapted to the low ratio of ATP/ADP maintained by glycolysis. Based on this observation, we propose that the outcome of Bcl-2 expression is determined by the type of cellular ATP synthesis, namely that Bcl-2 causes apoptosis in cells relying on oxidative phosphorylation., M. Vrbacký, J. Krijt, Z. Drahota, Z. Mělková., and Obsahuje bibliografii
Disorders of ATP synthase, the key enzyme of mitochondrial energy provision belong to the most severe metabolic diseases presenting as early- onset mitochondrial encephalo- cardiomyopathies. Up to now, mutations in four nuclear genes were associated with isolated deficiency of ATP synthase. Two of them, ATP5A1 and ATP5E encode enzyme’s st ructural subunits α and ε , respectively, while the other two ATPAF2 and TMEM70 encode specific ancillary factors that facilitate the biogenesis of ATP synthase. All these defects share a similar biochemical phenotype with pronounced decrease in the content of fully assembled and functional ATP synthase complex. However, substantial differences can be found in their frequency, molecular mechanism of pathogenesis, clinical manifestation as well as the course of the disease progression. While for TMEM70 the number of reported patients as well as spectrum of the mutations is steadily increasing, mutations in ATP5A1, ATP5E and ATPAF2 genes are very rare. Apparently, TMEM70 gene is highly prone to mutagenesis and this type of a rare mitochondrial disease has a rather frequent incidence. Here we present overview of individual reported cases of nuclear mutations in ATP synthase and discuss, how their analysis can improve our understanding of the enzyme biogenesis., K. Hejzlarová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy