Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev’s inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces., Takao Ohno, Tetsu Shimomura., and Obsahuje seznam literatury
We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities., Takao Ohno, Tetsu Shimomura., and Obsahuje seznam literatury
Geiss, Keller and Oppermann (2013) introduced the notion of n-angulated category, which is a “higher dimensional” analogue of triangulated category, and showed that certain (n-2)-cluster tilting subcategories of triangulated categories give rise to n-angulated categories. We define mutation pairs in n-angulated categories and prove that given such a mutation pair, the corresponding quotient category carries a natural n-angulated structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories., Zengqiang Lin., and Obsahuje seznam literatury