We discuss the convergence of approximate identities in Musielak-Orlicz spaces extending the results given by Cruz-Uribe and Fiorenza (2007) and the authors F.-Y. Maeda, Y. Mizuta and T. Ohno (2010). As in these papers, we treat the case where the approximate identity is of potential type and the case where the approximate identity is defined by a function of compact support. We also give a Young type inequality for convolution with respect to the norm in Musielak-Orlicz spaces.
Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev’s inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces., Takao Ohno, Tetsu Shimomura., and Obsahuje seznam literatury
We define and study Musielak-Orlicz-Sobolev spaces with zero boundary values on any metric space endowed with a Borel regular measure. We extend many classical results, including completeness, lattice properties and removable sets, to Musielak-Orlicz-Sobolev spaces on metric measure spaces. We give sufficient conditions which guarantee that a Sobolev function can be approximated by Lipschitz continuous functions vanishing outside an open set. These conditions are based on Hardy type inequalities., Takao Ohno, Tetsu Shimomura., and Obsahuje seznam literatury
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.