In stressful environments, invasive plants acclimate more efficiently than native plants and hybridization mainly contributes to this process. We examined changes in the morphological characteristics, photosynthetic characteristics, and antioxidant capacity of Sphagneticola trilobata and its hybrids in a low-light environment to explore their invasiveness, with Sphagneticola calendulacea serving as the control. The morphological plasticity of S. trilobata was not dominant, the maximal photochemical efficiency of PSII, actual quantum yield of PSII, and electron transport rate of PSⅡ increased and nonphotochemical quenching decreased, while S. calendulacea and the hybrid produced opposite results. S. trilobata showed fewer spots stained for reactive oxygen species in tissues, with an increase in superoxide dismutase activity. Although S. trilobata is a heliophilous plant, we found that the shade tolerance of S. trilobata and the hybrid were stronger than that of S. calendulacea, which may be one important mechanism of invasion.
Shade treatment was applied to tall fescue with 30% full light. The results showed that shade increased chlorophyll (Chl) content per unit leaf mass, decreased the Chl a/b ratio in the mature leaves, and decreased effective quantum yield based on Chl fluorescence compared to the full light treatment. Shade stress did not cause increased contents of malondiadehyde at the early stages of leaf development. However, normalized vegetation indices were able to detect shade stress. Chloroplasts in the shaded leaves are arranged tightly against the periclinal cell wall and are in a spindle shape. There were no differences in the number of grana per chloroplast or grana size (thylakoids per granum) between shade and full light treatment. In conclusion, tall fescue leaves showed unique ultrastructure changes. Turfgrass managers could use vegetation indices developed from the leaf light reflection spectrum as an effective tool to assess shade stress levels and make management decisions.
Significant linear relationships between photosynthetic capacity and principal components loaded by phloem cell numbers and tracheary elements per minor vein as well as the latter two normalized for vein density (proxy for apoplastic phloem loading capacity involving membrane transporters) were revealed for all apoplastic loaders (summer annuals and winter annual Arabidopsis thaliana). In addition, significant linear relationships between photosynthetic capacity and a principal component loaded by tracheary element cross-sectional areas and volumes per unit of leaf area (water flux capacity proxy) was present for symplastic and apoplastic loaders. Lastly, a significant linear relationship between photosynthetic capacity and a principal component loaded by phloem cell cross-sectional areas and volumes per unit of leaf area (proxy for symplastic loading capacity involving cytosolic enzymes for companion cells) was revealed for summer annual symplastic loaders as well as for A. thaliana (in the case of sieve elements, a proxy for sugar export capacity from the leaves)., S. K. Polutchko, J. J. Stewart, B. Demmig-Adams, W. W. Adams., and Obsahuje bibliografické odkazy
Photosynthesis is amongst the plant cell functions that are highly sensitive to any type of changes. Sun and shade conditions are prevalent in fields as well as dense forests. Dense forests face extreme sun and shade conditions, and plants adapt themselves accordingly. Sun flecks cause changes in plant metabolic processes. In the field, plants have to face high light intensity and survive under such conditions. Sun and shade type of plants develops a respective type of chloroplasts which help plants to survive and perform photosynthesis under adverse conditions. PSII and Rubisco behave differently under different sun and shade conditions. In this review, morphological, physiological, and biochemical changes under conditions of sun (high light) and shade (low light) on the process of photosynthesis, as well as the tolerance and adaptive mechanisms involved for the same, were summarized., S. Mathur, L. Jain, A. Jajoo., and Obsahuje bibliografické odkazy
The mechanisms of capsicum growth in response to differential light availabilities are still not well elucidated. Hereby, we analyzed differential light availabilities on the relationship between stomatal characters and leaf growth, as well as photosynthetic performance. We used either 450-500 µmol m-2 s-1 as high light (HL) or 80-100 µmol m-2 s-1 as low light (LL) as treatments for two different cultivars. Our results showed that the stomatal density (SD) and stomatal index (SI) increased along with the leaf area expansion until the peak of the correlation curve, and then decreased. SD and SI were lower under the LL condition after three days of leaf expansion. For both cultivars, downregulation of photosynthesis and electron transport components was observed in LL-grown plants as indicated by lower light- and CO2-saturated photosynthetic rate (Pmax and RuBPmax), quantum efficiency of photosystem II (PSII) photochemistry (ΦPSII), electron transport rate (ETR) and photochemical quenching of fluorescence (qp). The observed inhibition of the photosynthesis could be explained by the decrease of SD, SI, Rubisco content and by the changes of the chloroplast. The low light resulted in lower total biomass, root/shoot ratio, and the thickness of the leaf decreased. However, the specific leaf area (SLA) and the content of leaf pigments were higher in
LL-treatment. Variations in the photosynthetic characteristics of capsicum grown under different light conditions reflected the physiological adaptations to the changing light environments. and Q. S. Fu ... [et al.].