In 1955, the work started in the Institute for Theoretical Radio Engineering of the Czechoslovak Academy of Sciences, the predecessor of today’s Institute of Photonics and Electronics of the Czech Academy of Sciences. In the year 2015, proclaimed as the International Year of Light by the UNESCO, let us recall selection of the milestones of the past 60 years of scientific research in our institution, particularly those related to photonics and light. and V roce 1955 zahájil svou činnost Ústav teoretické radiotechniky Československé akademie věd, předchůdce dnešního Ústavu fotoniky a elektroniky Akademie věd České republiky. V roce 2015, vyhlášeným UNESCO za Mezinárodní rok světla, si připomeňme výběr z některých milníků už 60 leté historie vědeckého bádání v našem ústavu, zejména těch se vztahem k fotonice a světlu.
Arbuscular mycorrhizal symbiosis is the most frequent and ancestral type of mycorrhizal symbiosis. It is estimated that at least 80% of terrestrial plant species are able to form a mutualistic relation with fungi. Consequently in the context of successful plant invasions, arbuscular mycorrhizal fungi may have a favourable if not a crucial role. The mycorrhizal status of 23 invasive species is reported here for the first time. This study also tested whether the intensity of mycorrhizal colonization of the roots of invasive species is related to that of the dominant species of invaded plant community. This is partly supported by our results when total percentages of mycorrhizal colonization were compared. In addition, the effect of habitat and community characteristics on the intensity of colonization of the roots of invasive species by arbuscular mycorrhizal fungi was tested and several significant correlations were revealed. At the among-species level, the total mycorrhizal colonization decreases and the relative arbuscular colonization increases in the roots of invasive species with increasing nitrogen availability in the habitat. Both these relations are significant after phylogenetic correction, which suggests this is an evolutionary adaptation. There are also negative correlations between the relative arbuscular colonization of invading species and the light and temperature demands of the species present in the community, and a positive correlation between the relative arbuscular colonization of the invaders and soil wetness. That all these relations are revealed at the within-species level possibly reflects differences among the habitats studied.
In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (PN), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in PN occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum PN compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse., L. Y. Yang, L. T. Wang, J. H. Ma, E. D. Ma, J. Y. Li, M. Gong., and Obsahuje bibliografii
Increasing the efficiency of photosynthesis in sugarcane canopies is the key for improving crop yield. Herein, we evaluated the photosynthetic performance along the canopy of ten sugarcane cultivars and three Saccharum species. Canopy morphological traits were evaluated, and leaf gas exchange was measured in the first (sun-exposed, +1) and the fourth (shaded, +4) fully expanded leaves and under low- and high-light conditions. Similar photosynthetic capacity was found in leaves +1 and +4 under high light in genotypes with a high leaf area index and a high fraction of the sky blocked by the foliage (> 85%). Interestingly, such canopy characteristics cause low light availability to leaves +4, suggesting the photosynthetic acclimation of these leaves to self-shading in some genotypes. We highlight IACCTC06-8126 and CTC4 as those genotypes with higher canopy photosynthetic capacity, presenting high leaf area, high photosynthetic rates in sun-exposed leaves, and high responsiveness of shaded leaves to increasing light availability.
Říše hmyzu poskytuje výjimečnou rozmanitost optických jevů, často pozorovaných jako duhovost barev. Zajímavým objektem pro zkoumání strukturovanosti barev je brouk Chrysina gloriosa z čeledi vrubounovitých. Způsob ovládání světla na submikrometrové škále, který byl nedávno objeven v tvarových buňkách kutikuly, je inspirací pro současné fotonické technologie., The insect kingdom provides us with an exceptional variety of optical phenomena, commonly observed as iridescence. An interesting example for studying structural coloration is the beetle Chrysina gloriosa (family Scarabaeidae). The recent discovery of its control of light at the sub-micrometre scale, in axicon-shaped cuticle cells, is the inspiration for current photonic technologies., Petr Bouchal, Zdeněk Bouchal., and Obsahuje bibliografické odkazy
Carbon dioxide concentration and light conditions may greatly vary between mountainous and lowland areas determining the photosynthetic performance of plants species. This paper aimed to evaluate the photosynthetic responses of Lotus corniculatus, growing in a mountain and a lowland grassland, under low and high radiation and CO2 concentration. Net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration were measured while the water-use efficiency and the ratio of variable to maximal fluorescence were calculated. Photosynthetic response curves to different levels of radiation and intercellular CO2 partial pressure were estimated. Our results showed that high radiation and CO2 concentration enhanced
water-use efficiency of plants at both sites, enabling them to use more efficiently the available water reserves under drought conditions. The increase of radiation and CO2 concentration would enhance the photosynthetic performance of the mountainous population of L. corniculatus, which overall seems to express higher phenotypic plasticity., P. Kostopoulou, M. Karatassiou., and Obsahuje bibliografii
"Sotva existuje ve fyzice jednodušší zákon než ten, dle něhož se šíří světlo v prázdném prostoru. Každý školák ví nebo věří, že ví, že toto šíření se děje přímočaře rychlostí c = 300 000 km.s-1. Víme rozhodně s velkou exaktností, že tato rychlost jest pro všechny barvy stejná; neboť kdyby tomu tak nebylo, tu by při zakrytí nějaké stálice její temnou oběžnicí nebylo pro různé barvy emisní minimum současně pozorováno. Podobnou úvahou, vztahující se na dvojhvězdy, mohl hollandský astronom de Sitter ukázati, že rychlost šíření se světla nemůže záviseti na rychlosti tělesa světlo vysílajícího. Domněnka, že tato rychlost závisí na směru "v prostoru", jest sama o sobě málo pravděpodobná." (Albert Einstein [1])
"Světlo si myslí, že dokáže cestovat rychleji než cokoliv jiného, ale to se mýlí. I kdyby dokázalo cestovat seberychleji, kamkoliv dorazí, všude najde tmu, která tam byla dřív a už na něj čeká." (Terry Pratchett [2]), This article describes some important measurements of the speed of light from the days of Galileo to the determination of its value by definiton in 1983. We discuss the position of this fundamental constant of nature as the speed limit for information and energy within the framework of the special theory of relativity., Lukáš Richterek., and Obsahuje seznam literatury
The vast majority of physical objects we deal with are almost exclusively made of atoms. Due to their discrete level structure, single atoms have proved to be excellent emitters of nonclassical light, i.e. single photons. We demonstrate experimentally that this nonclassical behaviour is preserved when scaling up the number of atoms in the source ensemble by several orders of magnitude., Lukáš Slodička, Ondřej Číp a Radim Filip., and Obsahuje bibliografické odkazy