Říše hmyzu poskytuje výjimečnou rozmanitost optických jevů, často pozorovaných jako duhovost barev. Zajímavým objektem pro zkoumání strukturovanosti barev je brouk Chrysina gloriosa z čeledi vrubounovitých. Způsob ovládání světla na submikrometrové škále, který byl nedávno objeven v tvarových buňkách kutikuly, je inspirací pro současné fotonické technologie., The insect kingdom provides us with an exceptional variety of optical phenomena, commonly observed as iridescence. An interesting example for studying structural coloration is the beetle Chrysina gloriosa (family Scarabaeidae). The recent discovery of its control of light at the sub-micrometre scale, in axicon-shaped cuticle cells, is the inspiration for current photonic technologies., Petr Bouchal, Zdeněk Bouchal., and Obsahuje bibliografické odkazy
We report on a new method of incoherent holographic microscopy which is based on modern optical components using the geometric (Pancharatnam-Berry) phase. The proposed method combines advantages of achromatic off-axis holography and robust common-path interferometry and provides quantitative restoration of the phase retardance introduced between any orthogonal polarization states. This makes the method predestined for the study of the amplitude and phase response of plasmonic metasurfaces. The high accuracy of the phase restoration was verified on a benchmark metasurface and further tested using metasurface grating with frequency 833 lines/mm and vortex metasurfaces. Thanks to the superior light sensitivity of the method, we successfully demonstrated widefield measurement of the phase altered by individual building blocks of the metasurface while maintaining the measurement precision well below 0.15 rad. and Článek popisuje novou metodu nekoherentní holografické mikroskopie založenou na využití moderních optických prvků pracujících na principu geometrické (Pancharatnamovy-Berryho) fáze. Metoda kombinuje výhody achromatické mimoosové holografie a robustní jednocestné interferometrie a umožňuje kvantitativně rekonstruovat fázovou retardaci vnesenou mezi ortogonální polarizační stavy. Těchto vlastností lze s výhodou využít ke studiu amplitudové a fázové odezvy plazmonických metapovrchů. Vysoká přesnost měření fáze plazmonických metapovrchů byla ověřena pomocí kalibračního metapovrchu a dále testovaná při zobrazení metapovrchové mřížky s frekvencí 833 čar/mm a vírových metapovrchů. Díky vysoké citlivosti použité metody jsme prokázali možnost kvantitativního měření fázové odezvy metapovrchů až na úrovni jejich jednotlivých stavebních bloků, a to při zachování přesnosti měření pod 0,15 radiánu.
Digital microscopy imaging methods developed at the Institute of Physical Engineering introduce innovative application potential. Application possibilities of imaging capabilities of developed optical microscopes are presented here. and Metody digitálního mikroskopového zobrazování dlouhodobě rozvíjené na pracovišti Ústavu fyzikálního inženýrství nabízí inovativní aplikační potenciál. Jsou prezentovány možnosti využití zobrazovacích schopností vyvinutých optických mikroskopů.
Světelné víry se objevují v jevech, které jsou v optice známy od počátku 19. století. Je proto překvapivé, že první ucelená práce byla v této tematice publikována až v roce 1974 a výzkum se plně rozvinul v posledních 20 letech. V příspěvku jsou prezentovány jednoduché geometrické představy o světelných vírech a jejich fyzikálních vlastnostech a naznačena podstata základních experimentů a aplikací., Light vortices appear in phenomena that have been known in optics from the early 19th century. It is therefore surprising that any comprehensive work on this topic did not appear until 1974 and that the research has only fully developed during the last 20 years. In this paper, simple geometric ideas about light vortices and their physical properties are presented and the basic of experiments and applications are outlined., Zdeněk Bouchal, Petr Bouchal., and Obsahuje seznam literatury
The paper describes design and realization of a flexible vortex microscope allowing three-dimensional localization and tracking of fluorescence excited and weakly scattering nanoparticles. Information about localized objects is obtained from the interference of light vortices created by optical components, which modulate both amplitude and phase of light and were prepared by electronbeam lithography. Design of the vortex microscope is based on the inverted microscope Nikon Eclipse E600 operating with additional illumination and imaging modules that enable recording and reconstruction of the sample in fluorescence, episcopic and diascopic imaging modes. The variability of the vortex microscope allows a dynamic spatial localization of nanoparticles in the axial range exceeding 23 times the depth of field of the microscope objective used, achieving an isotropic accuracy of 10-50 nm. The tracking of nanoparticles under Brownian motion was demonstrated in a volume of 14×10×16 mm3 . The practical usability of the system was tested by fluorescence imaging of LW13K2 cells and localization of cellular proteins. and V článku je popsán návrh a realizace flexibilního vírového mikroskopu, který umožňuje trojrozměrnou lokalizaci a sledování fluorescenčně excitovaných a slabě rozptylujících částic nanometrových rozměrů. Informace o lokalizovaných objektech je získána z interference světelných vírů vytvořených optickými komponentami, které současně modulují amplitudu i fázi světla a byly připraveny technikou elektronové litografie. Základem experimentálního systému je mikroskop Nikon Eclipse E600 rozšířený o zobrazovací a osvětlovací moduly, které umožňují záznam a rekonstrukci vzorku ve fluorescenčním, episkopickém a diaskopickém zobrazovacím režimu. Variabilita konstrukce vírového mikroskopu umožňuje dynamickou prostorovou lokalizaci nanometrových objektů v axiálním rozsahu převyšujícím až 23krát hloubku ostrosti použitého objektivu při izotropní přesností 10-50 nm. Sledování nanočástic při Brownově pohybu bylo demonstrováno v objemu 14×10×16 mm3 . Praktická použitelnost systému byla testována při fluorescenčním zobrazení krysích buněk LW13K2 a lokalizaci buněčných proteinů.