Morphological, anatomical, and physiological leaf traits of Corylus avellana plants growing in different light conditions within the natural reserve "Siro Negri" (Italy) were analyzed. The results highlighted the capability of C. avellana to grow both in sun and shade conditions throughout several adaptations at leaf level. In particular, the more than 100% higher specific leaf area in shade is associated to a 44% lower palisade to spongy parenchyma thickness ratio compared with that in sun. Moreover, the chlorophyll (Chl) a to Chl b ratio decreased in response to the 97% decrease in photosynthetic photon flux density. The results highlighted the decrease in the ratio of Chl to carotenoid content, the maximum PSII photochemical efficiency, and the actual PSII photochemical efficiency (ΦPSII) associated with the increase in the ratio of photorespiration to net photosynthesis (PN) in sun. Chl a/b ratio was the most significant variable explaining PN variations in shade. In sun, PN was most influenced by the ratio between the fraction of electron transport rate (ETR) used for CO2 assimilation and ETR used for photorespiration, by ΦPSII, nitrogen content per leaf area, and by total Chl content per leaf area. The high phenotypic plasticity of C. avellana (PI = 0.33) shows its responsiveness to light variations. In particular, a greater plasticity of morphological (PIm = 0.41) than of physiological (PIp = 0.36) and anatomical traits (PIa = 0.24) attests to the shade tolerance of the species., R. Catoni, M.U. Granata, F. Sartori, L. Varone, L. Gratani., and Obsahuje bibliografii
Plant traits of Malcolmia littorea growing at the Botanic Garden of Rome and transplanted from the wild population developing along the Latium coast (Italy) were analyzed. The highest photosynthetic rates [PN, 22.5 ± 0.5 μmol(CO2) m-2 s-1], associated to the highest chlorophyll content (Chl, 60 ± 5 SPAD units), and respiration rates [R, 11.1 ± 0.2 μmol(CO2) m-2 s-1] were reached in spring, when mean air temperature (Tm) was in the range 17°C to 23°C. PN, Chl, and R decreased by 86, 38, and 59% in summer when mean maximum air temperature (Tmax) was 30.3 ± 2.6°C. Leaf water potential decreased by 34% in summer compared to the spring value, and it was associated to a relative water content (RWC) of 74 ± 4%, and to a water-use efficiency (WUE) of 2.15 ± 0.81 μmol(CO2) mmol-1(H2O). Moreover, also low air temperatures determined a significant PN and R decreases (by 52 and 40% compared to the maximum, respectively). Responsiveness of gross photosynthetic rate (Pg) to R was higher than that to PN as underlined by the slope of the regression line between the two variables. The results underlined a low tolerance to both high- and low air temperatures of M. littorea. The selected key traits (R, WUE, Chl) by the discriminant analysis might be used to monitor the M. littorea wild population in the long time. The ex situ cultivated plants could be propagated and used to increase the individuals number of the wild population. and L. Gratani ... [et al.].
Leaf respiration (R L) of evergreen species co-occurring in the Mediterranean maquis developing along the Latium coast was analyzed. The results on the whole showed that the considered evergreen species had the same R L trend during the year, with the lowest rates [0.83 ± 0.43 μmol(CO2) m-2 s-1, mean value of the considered species] in winter, in response to low air temperatures. Higher R L were reached in spring [2.44 ± 1.00 μmol(CO2) m-2 s-1, mean value] during the favorable period, and in summer [3.17 ± 0.89 μmol(CO2) m-2 s-1] during drought. The results of the regression analysis showed that 42% of R L variations depended on mean air temperature and 13% on total monthly rainfall. Among the considered species, C. incanus, was characterized by the highest R L in drought [4.93 ± 0.27 μmol(CO2) m-2 s-1], low leaf water potential at predawn (Ψpd = -1.08 ± 0.18 MPa) and midday (Ψmd = -2.75 ± 0.11 MPa) and low relative water content at predawn (RWCpd = 80.5 ± 3.4%) and midday (RWCmd = 67.1 ± 4.6%). Compared to C. incanus, the sclerophyllous species (Q. ilex, P. latifolia, P. lentiscus, A. unedo) and the liana (S. aspera), had lower R L [2.72 ± 0.66 μmol(CO2) m-2 s-1, mean value of the considered species], higher RWCpd (91.8 ± 1.8%), RWCmd (82.4 ± 3.2%), Ψpd (-0.65 ± 0.28 MPa) and Ψmd (-2.85 ± 1.20 MPa) in drought. The narrow-leaved species (E. multiflora, R. officinalis, and E. arborea) were in the middle. The coefficients, proportional to the respiration increase for each 10°C rise (Q10), ranging from 1.49 (E. arborea) to 1.98 (A. unedo) were indicative of the different sensitivities of the considered species to air temperature variation., R. Catoni, L. Varone, and L. Gratani., and Obsahuje bibliografii