Lake Śniardwy is the largest among more than 7000 Polish lakes. So far, it has not been a subject of detailed investigations concerning long-term changes in water temperature or ice regime. A considerable change in thermal and ice conditions has been observed in the period 1972–2019. Mean annual water temperature increased by 0.44°C dec–1 on average, and was higher than an increase in air temperature (0.33°C dec–1). In the monthly cycle, the most dynamic changes occurred in April (0.77°C dec–1). In the case of ice cover, it appeared increasingly later (5.3 days dec–1), and disappeared earlier (3.0 days dec–1). The thickness of ice cover also decreased (2.4 cm dec–1). Statistical analysis by means of a Pettitt test showed that the critical moment for the transformations of the thermal and ice regime was the end of the 1980’s. In addition to the obvious relations with air temperature for both characteristics, it was evidenced that the occurrence of ice cover depended on wind speed and snow cover. The recorded changes in the case of Lake Śniardwy are considered unfavourable, and their consequences will affect the course of physical, chemical, and biological processes in the largest lake in Poland.
Seedlings of four tree species (Bischofia javanica, Dracontomelon dao, Erythrina orientalis, and Pterocarpus indicus) were planted in flat and sloping grassland in plantation sites established in May 2002 in the La Mesa watershed, Philippines. Tree growth and net photosynthetic rate (PN) were monitored. The height, diameter at the root collar, and PN of the four species grown in the sloping grass site were larger than those of seedlings grown in the flat grass site. In addition, soil moisture contents in the sloping grass site were higher than those of the flat grass site. Growth of the four species was probably strongly associated with microenvironments (e.g. air temperature) in both tested sites. and S.-Y. Woo, D. K. Lee, Y.-K. Lee.
Differences in leaf traits among the dune species developing along the Latium coast were analysed. Cakile maritima Scop. subsp. maritima, Elymus farctus (Viv.) Runemark ex Melderis subsp. farctus, Ammophila arenaria (L.) Link subsp. australis (Mabille) Lainz, Ononis variegata L., Pancratium maritimum L., Eryngium maritimum L., and Anthemis maritima L. were considered. The considered species showed a similar net photosynthetic rate (PN) and chlorophyll content (Chl) during the year, with a peak from the end of April to the middle of May [13.0±3.6 μmol (CO2) m-2 s-1 and 0.63±0.21 mg g-1, respectively, mean values of the considered species], favoured by air temperature in the range 13.3-17.5°C, and 6% of soil water availability. In June-July, the increase of air temperature (Tmax = 28.4°C), associated with a lower water availability (42 mm, total rainfall of the period) and a 1% of soil water availability determined a significant decrease of P N (59%, mean of the considered species) and Chl (38%), and an increase of the carotenoid (Car)/Chl ratio (59%). The significant correlation between PN and stomatal conductance (gs) (p<0.05) explained 67% of P N variations. Moreover, the correlation between P N and leaf temperature (Tl) underlined that the favourable Tl enabling 90-100% of the highest PN for the considered species was within the range 23.4 to 26.6°C. P N decreased below half of its maximum value when Tl was over 35.8 and 37.4°C for E. farctus subsp. farctus and A. arenaria subsp. australis, respectively and over 32.2°C for the other considered species (mean value). Leaf mass area (LMA) varied from 6.8 ± 0.7 mg cm-2 (O. variegata) to 30.6 ± 1.6 mg cm-2 (A. arenaria). PCA (principal component analysis) carried out using the considered morphological and physiological leaf traits underlined that the co-occurring species were characterised by different adaptive strategies: E. farctus and A. arenaria photosynthesized for a long period also when air temperature was over 35.8 and 37.4°C, respectively, because of their lower transpiration rates [E, 1.4 ± 0.1 mmol (H2O) m-2 s-1], which seemed to be controlled by the highest LMA. On the contrary, A. maritima and C. maritima subsp. maritima had a higher PN (on an average 52% higher than the others) in the favourable period, allowed by the highest succulence index (SI, 85.7 ± 9 mg cm-2) and the lower LMA. The results allowed us to hypothesize that A. arenaria and E. farctus might be at a competitive advantage relative to the other considered species with respect to the increase of air temperature, by their ability to photosynthesize at sufficient rates also during summer. and L. Gratani, L. Varone, M. F. Crescente.
Plant traits of Malcolmia littorea growing at the Botanic Garden of Rome and transplanted from the wild population developing along the Latium coast (Italy) were analyzed. The highest photosynthetic rates [PN, 22.5 ± 0.5 μmol(CO2) m-2 s-1], associated to the highest chlorophyll content (Chl, 60 ± 5 SPAD units), and respiration rates [R, 11.1 ± 0.2 μmol(CO2) m-2 s-1] were reached in spring, when mean air temperature (Tm) was in the range 17°C to 23°C. PN, Chl, and R decreased by 86, 38, and 59% in summer when mean maximum air temperature (Tmax) was 30.3 ± 2.6°C. Leaf water potential decreased by 34% in summer compared to the spring value, and it was associated to a relative water content (RWC) of 74 ± 4%, and to a water-use efficiency (WUE) of 2.15 ± 0.81 μmol(CO2) mmol-1(H2O). Moreover, also low air temperatures determined a significant PN and R decreases (by 52 and 40% compared to the maximum, respectively). Responsiveness of gross photosynthetic rate (Pg) to R was higher than that to PN as underlined by the slope of the regression line between the two variables. The results underlined a low tolerance to both high- and low air temperatures of M. littorea. The selected key traits (R, WUE, Chl) by the discriminant analysis might be used to monitor the M. littorea wild population in the long time. The ex situ cultivated plants could be propagated and used to increase the individuals number of the wild population. and L. Gratani ... [et al.].
Below-average precipitation and above-average air temperature are important factors in the occurrence and intensity of drought. In the context of global climate change, air temperature increase, as a key climatological parameter, has to be considered when calculating the drought index. We introduce a new method of drought analysis, relying on standardized values of precipitation and mean air temperatures for a certain period. The standardized value is calculated by subtracting the average value for each period from each measured value and dividing the obtained value by the standard deviation of the sample. Next, the New Drought Index (NDI) is calculated by subtracting the standardized temperature value from the standardized precipitation value. NDI values were determined for the monthly and annual precipitation time series and mean monthly and annual air temperatures measured at the stations Split-Marjan and Zagreb-Grič between 1948 and 2020. The NDI indicates that the risk of drought has intensified significantly in recent decades, which may be related to the effect of global warming.
The main purpose of the research was to determine the conditions affecting ice phenomena, including the three-phase cycle of ice: expansion, retention and decay of the ice cover on selected rivers of the Baltic coastal zone in the Northern Poland (Przymorze region). The analysis has been elaborated for the years 1951–2010 against the backdrop of currently occurring climatic changes, with particular emphasis on the development and phase variability of the NAO. The article presents the impact of the variability in atmospheric circulation which has manifested in an increase in air temperature, over the last 20 years, on thermal conditions during winter periods in the South Baltic Coastal Strip. The increase in air temperature has contributed to an increase in the temperature of river waters, thus leading to a shortening of the duration of ice phenomena on rivers in the Przymorze region. The article also brings to light an increased occurrence of winter seasons classified as cool, and a disruption in the occurrence of periods classified as normal over the last 30 observed years. The research has demonstrated a significant dependence between the seasonal change in air temperature and the variability of thermal conditions of water, which has a direct impact on the variability of the icing cycle of rivers in the Przymorze region. The authors also show that the variability in forms of ice phenomena for individual river sections is determined by the local factors, i.e. anthropogenic activity, impact of urbanized areas or inflow of pollutants.
The main aim of this work is to evaluate the development of rainfall-runoff regime in selected river basins of the Šumava Mountains (Bohemian Forest), the Jeseníky Mountains and the Krušné Mountains (Ore Mountains) in the last 50 years. Besides the identification of inhomogeneity in time series of mean discharges, rainfall amounts, temperature and snow cover data, the work deals with an analysis of trends using annual and monthly data. Different methodological tools for identification of changes and trends in hydro-climatic time series have been introduced in this study, especially different methods of statistic testing and an application of Mann-Kendall seasonal test. The results have been compared not only from the point of view of the methods applied here, but as well from the viewpoint of geographical difference of the mentioned areas. and Hlavním cílem předložené studie je zhodnotit vývoj srážko-odtokového režimu ve vybraných povodích v oblasti Šumavy, Jeseníků a Krušných hor za posledních 50 let. Vedle zjišťování nehomogenit v časových řadách průměrných průtokových, srážkových, ale i teplotních a sněhových dat se práce zabývá analýzou trendů na úrovni ročních hodnot a jednotlivých měsíců. V práci jsou představeny různé metodické nástroje ke sledování změn a trendů v hydroklimatologických řadách, zejména různé metody statistického testování a aplikace Mann-Kendallova sezónního testu. Výsledky jsou porovnány nejen z hlediska použitých metod, ale i geografické rozdílnosti sledovaných území.