nfective nymphal stages of the family Sebekidae Sambon, 1922 are reported from four species of fish in Australian waters for the first time. Infected fish were collected from locations in Western Australia, the Northern Territory and north Queensland. The infective nymphs of Alofia merki Giglioli in Sambon, 1922 and Sebekia purdieae Riley, Spratt et Winch, 1990 are reported and described for the first time. The remaining specimens were identified as belonging to the genus Sebekia Sambon, 1922 based on the combination of buccal cadre shape, shape and size of hooks, and overall body size, but could not be attributed to any of the other species of Sebekia already reported due to missing required morphological features. DNA sequences of members of the family Sebekidae are presented for the first time. The lack of knowledge on the pentastome fauna of wild crocodiles, and any potential intermediate hosts, in northern Australia, is also outlined., Diane P. Barton, Jess A.T. Morgan., and Obsahuje bibliografii
From November 1997 to June 1998, 3,118 specimens of Echinogammarus stammeri (Karaman, 1931) (Amphipoda) were collected from the River Brenta (Northern Italy) and examined for larval helminths. Larvae of Polymorphus minuius (Goeze, 1782) singly infected the hemocoel of 23 (0.74%) crustaceans; all these larvae were cystacanth stages. This is the first record of Polymorphus minuius in E. stammeri. Some cystacanths had their forebody and hindbody fully inverted. Parasites were bright orange in colour and each was surrounded by a thin acellular envelope. This envelope likely protects the developing parasite larva from cellular responses of the amphipod. Hemocytes were seen adherent to the outer surface of the envelope. The sex ratio among the parasitised E. stammeri was almost 1:1. All Polymorphus minutus larvae were central in the amphipod body, made intimate contact with host internal organs, and frequently induced a marked displacement of them. None of the infected females of E. stammeri. carried eggs or juveniles in their brood pouch. In five hosts, Polymorphus minuius co-occurrcd with the cystacanth of another acanlhocephalan, Pomphorhynchus laevis (Millier, 1776), a parasite offish.
The development of the nematode Spinitectus inermis (Zeder, 1800), a parasite of the stomach of eels, Anguilla anguilla (L.) in Europe, was experimentally studied. Mayfly nymphs Caenis macrura, Ecdyonurus dispar, Heptagenia sulphurea, Potamanthus luteus and Seratella ignita from Portugal and the Czech Republic were found to serve as experimental intermediate hosts. After ingestion of the nematode eggs by the mayfly nymphs, the toothed first-stage larvae were released and penetrated into the body cavity of the intermediate host. There they moulted twice (on day 4 and 6 post infection [p.i.] at water temperatures of 20-25°C), attaining the third infective stage. The definitive host, A. anguilla, undoubtedly acquires infection by feeding on mayfly nymphs harbouring infective-stage larvae. In an experimentally infected eel, the fourth-stage larva undergoing the third moult was observed 28 days p.i. at water temperature of 20ºC. The larval stages, including moulting forms, are described and illustrated. The prepatent period of S. inermis is estimated to be about two months.
Previously undescribed third-stage larvae of two species of Spirurida were found in the haemocoel of the stalk-eyed mud crab Macrophthalmus hirtipes (Heller) (Ocypodidae) in New Zealand. Examinations by light and scanning electron microscopy showed that the larger larvae (about 7 mm long) belonged to a species of Ascarophis van Beneden, 1871 (Cystidicolidae), the genus including parasites of fishes, whereas the smaller larvae (about 4-5 mm long) belonged to the Acuariidae, a family with species parasitic as adults mostly in aquatic birds. In a sample of 82 specimens of M. hirtipes collected in July 2002 from Papanui Inlet, on Otago Peninsula, South Island, 74 crabs (90.2%) were infected with larval nematodes with an intensity of 1-18 (mean 4.6) nematodes per crab; no distinction between nematode species was made in these estimates, although juvenile Acuariidae greatly outnumbered larval Ascarophis. Apparently, crabs play a role as intermediate hosts of these nematode species. This is the first record of larval representatives of Cystidicolidae and Acuariidae from invertebrates in the Australasian Region.
The development of the nematode Syncuaria squamata (Linstow, 1883), a gizzard parasite of cormorants, was experimentally studied in the ostracod Notodromas monacha. After the eggs of this nematode have been swallowed by the ostracod, the toothed first-stage larvae of the parasite are released and penetrate through the intestinal wall into the haemocoel of the crustacean. Before attaining the infective third stage, the larvae moult twice in the body of the intermediate host (9-11 and 13-15 days after infection at water temperatures of 20-22° C). The fishes Alhumaides hipunctatus, Noemacheilus barbatulus, Oncor-hynchus mykiss and Poecilia reticulata were for the first time recorded as suitable experimental paratenic hosts of S. squamata third-stage larvae in which a slight growth of larvae may occur. The first recorded natural paratenic host of this nematode was tench, Tinca tinea, originating from a South-Bohemian pond where cormorants occur. Paratenic hosts are apparently the main source of S. squamata infection for cormorants.
Parasites commonly manipulate host behaviour to increase transmission success between hosts. While most behavioural changes comprise slight alterations to host activity patterns and habitat use, some represent impressive alterations to routine behaviour which, while having direct positive effects on parasite transmission, compromise host survival. Here, we report conspicuous risky behaviour in an African annual killifish, Nothobranchius furzeri, infected by metacercariae of a strigeid trematode, Apatemon sp., residing in their cranial cavity. We demonstrate a striking contrast in the spatial and temporal behavioural responses of fish from populations naturally infected with Apatemon sp. and fish from two control populations with either a similar baseline parasite fauna but lacking Apatemon, or an overall low-level of infection. During routine activity, fish from Apatemon-infected populations positioned themselves just below the water surface, while other fish spent most of their time near the bottom. During a simulated avian attack, killifish from Apatemon-infected populations jumped above the water surface, moved in an uncoordinated manner, and rotated in the upper water layer, while fish from the control populations rapidly escaped into deeper water and ceased moving. The same self-exposing behaviour (jumping out of the water and lying on floating lily pads for extended periods) was also observed under natural conditions. Such behaviour greatly facilitates location of Apatemon-infected host fish by avian definitive hosts, especially in turbid pools. Moreover, the nothobranchiid killifish host's own life history, i.e. an extremely short lifespan limited to several months, may represent an important driver in the evolution of behavioural manipulation.
Three species of planktonie crustaceans, Cyclops strenuus and Macrocyclops alhidus (Copcpoda) and Notodromas monacha (Ostracoda), were experimentally infected with the eggs and second-stage larvae of the swimbladder nematode Anguillicola crassus originating from eels from Neusiedler Lake in Austria. At 20-22°C, third-stage larvae of the parasite developed in all these invertebrate hosts within 16-20 days p.i. Ostracods harbouring the nematode third-stage larvae (33 days p.i.) were fed to small eels (Anguilla anguilla), while infected copepods (20 days p.i.) to seven other fish species. By these experiments, the larvae from ostracods proved to be infective for the definitive host and the ostracod was thus confirmed as a true intermediate host of Anguillicola crassus. Notodromas monacha represents a new experimental intermediate host of A. crassus and the second known invertebrate other than a copepod in which the larval development of this nematode up to the infective stage takes place. Five species of fish, cyprinids Tinca tinea, Alhumus alburnus, Gobio gobio and Albumoides bipunctatus (the latter representing a new host record), and guppy, Poecilia reticulata, were found to serve as experimental paratenic hosts for A. crassus, in which the live nematode infective larvae were recorded 49 days p.i.
The life cycle of the swim bladder nematode Huffmanela huffmani Moravec, 1987 (Trichinelloidea: Trichosomoididae), an endemic parasite of centrarchid fishes in the upper spring run of the San Marcos River in Hays County, Texas, USA, was experimentally completed. The amphipods Hyalella cf. azteca (Saussure), Hyalella sp. and Gammarus sp. were successfully infected with larvated eggs of Huffmanela huffmani. After ingestion of eggs of H. huffmani by experimental amphipods, the first-stage larvae hatch from their eggshells and penetrate through the digestive tract to the hemocoel of the amphipod. Within about 5 days in the hemocoel of the experimental amphipods at 22 °C, the larvae presumably attained the second larval stage and were infective for the experimental centrarchid definitive hosts, Lepomis spp. The minimum incubation period before adult nematodes began laying eggs in the swim bladders of the definitive hosts was found to be about 7.5 months at 22 °C. This is the first experimentally completed life cycle within the Huffmanelinae., McLean L. D. Worsham, David G. Huffman, František Moravec, J. Randy Gibson., and Obsahuje bibliografii
The acanthocephalan Echinorhynchus bothniensis Zdzitowiecki and Valtonen, 1987 differs from most other species in the genus Echinorhynchus Zoega in Müller, 1776 by infecting mysids (order Mysida) instead of amphipods (order Amphipoda) as intermediate hosts. Here we report on the occurrence of E. bothniensis in mysids (Mysis segerstralei Audzijonytė et Väinölä) and in its fish definitive hosts in a high Arctic lake. Out of 15 907 sampled mysids, 4.8% were infected with a mean intensity of 1.05 worms (range 1-5), although there was notable variation between samples taken in different years and sites. Larger mysids appear more likely to be infected. Of five fish species sampled, charr,Salvelinus alpinus (Linnaeus), and a benthic-feeding whitefish morph, Coregonus lavaretus (Linnaeus), were the most heavily infected (mean abundances of 80 and 15, respectively). The adult parasite population in fish exhibited a female-biased sex ratio (1.78 : 1). Although E. bothniensis is rather unique in infecting mysids, many aspects of its natural history mirror that of other acanthocephalan species., Raija-Liisa Aura, Daniel P. Benesh, Risto Palomäki, E. Tellervo Valtonen., and Obsahuje bibliografii
The acanthocephalan Echinorhynchus salmonis Müller, 1784 is a common parasite of salmonid fish, but it has rarely been reported from an intermediate host. Samples of benthic amphipods, Monoporeia affinis (Lindström), were taken from multiple, deep sites (usually below 70 m) in the Gulf of Bothnia over the course of more than a decade and examined for acanthocephalans. Overall, only 0.44% of 23 296 amphipods were infected, all with just a single worm. This prevalence is consistent with several previous reports of acanthocephalans in deep-water, benthic amphipods, but it appears low compared to that often reported for acanthocephalan species infecting littoral amphipods. Parasite occurrence did not exhibit a clear regional pattern (i.e. northern vs southern sites) nor did it have any relationship with site depth. At sites sampled over multiple years, parasite abundance was consistently low (mostly < 0.01), though two spikes in abundance (over 0.06) were also observed, indicating that infection can be substantially higher at particular times or in particular places. The median density of E. salmonis in samples containing the parasite was estimated as 8.4 cystacanths per m2., Daniel P. Benesh, Raija-Liisa Aura, Ann-Britt Andersin, E. Tellervo Valtonen., and Obsahuje bibliografii