Using measures of gas exchange and photosynthetic chain activity, we found some differences between grapevine inflorescence and leaf in terms of photosynthetic activity and photosynthesis regulations. Generally, the leaf showed the higher net photosynthesis (PN) and lower dark respiration than that of the inflorescence until the beginning of the flowering process. The lower (and negative) PN indicated prevailing respiration over photosynthesis and could result from a higher metabolic activity rather than from a lower activity of the photosynthetic apparatus. Considerable differences were observed between both organs in the functioning and regulation of PSI and PSII. Indeed, in our conditions, the quantum yield efficiency and electron transport rate of PSI and PSII were higher in the inflorescence compared to that of the leaf; nevertheless, protective regulatory mechanisms of the photosynthetic chain were clearly more efficient in the leaf. This was in accordance with the major function of this organ in grapevine, but it highlighted also that inflorescence seems to be implied in the whole carbon balance of plant. During inflorescence development, the global PSII activity decreased and PSI regulation tended to be similar to the leaf, where photosynthetic activity and regulations remained more stable. Finally, during flowering, cyclic electron flow (CEF) around PSI was activated in parallel to the decline in the thylakoid linear electron flow. Inflorescence CEF was double compared to the leaf; it might contribute to photoprotection, could promote ATP synthesis and the recovery of PSII., M. Sawicki, B. Courteaux, F. Rabenoelina, F. Baillieul, C. Clement, E. Ait Barka, C. Jacquard, N. Vaillant-Gaveau., and Obsahuje bibliografii
The effect of differing environmental conditions on competition for resources was investigated by a comparison of net photosynthetic rate (PN) and vegetative production of Indiangrass [Sorghastrum nutans (L.) Nash.] at two strip mine sites with differing reclamation histories, and a railroad prairie site where this species occurs naturally. The treatment for a competition experiment consisted of tying back all species of neighboring plants around a target plant, and measuring its PN and vegetative performance during the growing season. Environmental variables at each site were also measured during the growing season. Soil bulk density and pH were higher at the two mine sites than at the prairie site, and soil texture, nutrients, and water potential were different at each of the three sites. PN of target plants compared closely among the three sites, and were lowest for plants at the railroad prairie. The competition experiment indicated that lower canopy leaves were most affected by competition for photosynthetically active radiation (PAR) at all sites. Significant differences in PN of upper canopy leaves were found between treatment and control plants at one of the mine sites. This site had higher soil water potentials and higher soil levels of P and K than the other mine site or the railroad prairie. Target plants at the other mine site experienced a low competition for PAR, likely due to lower soil moisture availability and therefore lower aboveground productivity. The largest differences in PN and irradiances between upper and lower canopy leaves occurred in target plants with neighbors at the railroad prairie, likely due to inter-specific competition. Vegetative production of the target plants also reflected the environment at each site, but did not reflect PN differences between treatments. S. nutans is well adapted to the varying environment at these three sites, and aboveground competition for radiant energy was probably not as limiting for this C4 grass as belowground competition. and V. A. Skeel, D. J. Gibson.