Kappaphycus alvarezii is a seaweed of great economic importance for the extraction of kappa carrageenan from its cell walls. The most common strains are dark red, brown, yellow, and different gradations of green. It is known that ultraviolet radiation (UVR) affects macroalgae in many important ways, including reduced growth rate, reduction of primary productivity, and changes in cell biology and ultrastructure. Therefore, we examined the brown strain of K. alvarezii exposed to ultraviolet-B radiaton (UVBR) for 3 h per day during 28 days of cultivation. The control plants showed growth rates of 7.27% d-1, while plants exposed to UVBR grew only 4.0% d-1. Significant differences in growth rates and in phycobiliproteins between control and exposed plants were also found. Compared with control plants, phycobiliprotein contents were observed to decrease after UV-B exposure. Furthermore, the chlorophyll a (Chl a) contents decreased and showed significant differences. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included increased thickness of the cell wall and number of plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast internal organization. Reaction with Toluidine Blue showed an increase in the thickness of the cell wall, and Periodic Acid-Schiff stain showed a decrease in the number of starch grains. By the significant changes in growth rates, photosynthetic contents and ultrastructual changes observed, it is clear that UVBR negatively affects intertidal macroalgae and, by extension, their economic viability. and É. C. Schmidt ... [et al.].
a1_Low light availability under a forest canopy often limits plant growth; however, sudden increase in light intensity may induce photoinhibition of photosynthesis. The aim of this study was to evaluate the ecophysiological changes that occur in potted plants of Minquartia guianensis and Swietenia macrophylla during the acclimation process to full sunlight. We used six full-sun independent acclimation periods (30, 60, 90, 120, 150, and 180 days) and a control kept in the shade. Shading was obtained by placing plants under the canopy of a small forest. The Fv/Fm ratio, net photosynthetic rate (PN), the maximum carboxylation velocity of Rubisco (Vcmax), maximum electron transport rate (Jmax), specific leaf area (SLA), and growth were assessed at the end of each of the six acclimation periods. Plant exposure to full sunlight caused a sudden decrease in the Fv/Fm ratio (photoinhibition) particularly in Minquartia. Photooxidation (necrotic patches) of the leaf tissue was observed in upper leaves of Minquartia. The higher PN values were observed in Swietenia under full sun, about 12 μmol(CO2) m-2 s-1. Vcmax25 values were higher after 90 days of acclimation, about 14 μmol(CO2) m-2 s-1 for Minquartia, and 35 μmol(CO2) m-2 s-1 for Swietenia. At the end of a 180-d acclimation period Jmax25 was 35 μmol(electron) m-2 s-1 for Minquartia and 60 μmol(electron) m-2 s-1 for Swietenia. SLA was higher in Swietenia than in Minquartia. In Minquartia, monthly rate of leaf production per plant (MRLP) was positive (0.22 leaf month-1) after four months in the open. Whereas, in Swietenia MRLP was positive (0.56 leaf month-1) after an acclimation period of two months. After six months in the open, height growth rates were 3.5 and 28 mm month-1 for Minquartia and Swietenia, respectively., a2_The greater acclimation capacity of Swietenia was associated to an enhanced photosynthetic plasticity under full sun. In Minquartia, transition to full-sun conditions and lack of physiological adjustment resulted in severe photoinhibition and loss of leaves., G. F. C. Azevedo, R. A. Marenco., and Obsahuje bibliografii