Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 .-), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions. and W. Xue ... [et al.].
a1_Low light availability under a forest canopy often limits plant growth; however, sudden increase in light intensity may induce photoinhibition of photosynthesis. The aim of this study was to evaluate the ecophysiological changes that occur in potted plants of Minquartia guianensis and Swietenia macrophylla during the acclimation process to full sunlight. We used six full-sun independent acclimation periods (30, 60, 90, 120, 150, and 180 days) and a control kept in the shade. Shading was obtained by placing plants under the canopy of a small forest. The Fv/Fm ratio, net photosynthetic rate (PN), the maximum carboxylation velocity of Rubisco (Vcmax), maximum electron transport rate (Jmax), specific leaf area (SLA), and growth were assessed at the end of each of the six acclimation periods. Plant exposure to full sunlight caused a sudden decrease in the Fv/Fm ratio (photoinhibition) particularly in Minquartia. Photooxidation (necrotic patches) of the leaf tissue was observed in upper leaves of Minquartia. The higher PN values were observed in Swietenia under full sun, about 12 μmol(CO2) m-2 s-1. Vcmax25 values were higher after 90 days of acclimation, about 14 μmol(CO2) m-2 s-1 for Minquartia, and 35 μmol(CO2) m-2 s-1 for Swietenia. At the end of a 180-d acclimation period Jmax25 was 35 μmol(electron) m-2 s-1 for Minquartia and 60 μmol(electron) m-2 s-1 for Swietenia. SLA was higher in Swietenia than in Minquartia. In Minquartia, monthly rate of leaf production per plant (MRLP) was positive (0.22 leaf month-1) after four months in the open. Whereas, in Swietenia MRLP was positive (0.56 leaf month-1) after an acclimation period of two months. After six months in the open, height growth rates were 3.5 and 28 mm month-1 for Minquartia and Swietenia, respectively., a2_The greater acclimation capacity of Swietenia was associated to an enhanced photosynthetic plasticity under full sun. In Minquartia, transition to full-sun conditions and lack of physiological adjustment resulted in severe photoinhibition and loss of leaves., G. F. C. Azevedo, R. A. Marenco., and Obsahuje bibliografii