Activities of some enzymes related to carbon metabolism were studied in different ecotypes of Rumex nepalensis growing at 1 300, 2 250, and 3 250 m above mean sea level. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, and glutamine synthetase increased with altitude, whereas activities of malate dehydrogenase, NAD-malic enzyme, and citrate synthase did not show a significant difference with change in altitude. and N. Kumar ... [et al.].
Differences in acclimation to elevated growth CO2 (700 µmol mol-1, EC) and elevated temperature (ambient +4 °C, ET) in successive leaves of wheat were investigated in field chambers. At a common measurement CO2, EC increased photosynthesis and the quantum yield of electron transport (Φ) early on in the growth of penultimate leaves, and later decreased them. In contrast, EC did not change photosynthesis, and increased Φ at later growth stages in the flag leaf. Contents of chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and total soluble protein were initially higher and subsequently lower in penultimate than flag leaves. EC decreased RuBPCO protein content relative to soluble protein and Chl contents throughout the development of penultimate leaves. On the other hand, EC initially increased the RuBPCO:Chl and Chl a/b ratios, but later decreased them in flag leaves. In the flag leaves but not in the penultimate leaves, ET initially decreased initial and specific RuBPCO activities at ambient CO2 (AC) and increased them at EC. Late in leaf growth, ET decreased Chl contents under AC in both kinds of leaves, and had no effect or a positive one under EC. Thus the differences between the two kinds of leaves were due to resource availability, and to EC-increased allocation of resources to photon harvesting in the penultimate leaves, but to increased allocation to carboxylation early on in growth, and to light harvesting subsequently, in the flag leaves. and P. Pérez ... [et al.].
Biao 810S is a chlorina mutant of the thermosensitive genic male sterile (TGMS) rice. We compared photosynthetic characteristics of these two lines. The contents of chlorophylls and carotenoids in Biao 810S were approximately half of those in 810S. However, the net photosynthetic rate (PN) of Biao 810S was higher than that of 810S under high irradiance or low concentration of carbon dioxide, and the photon quantum efficiency was higher than that of 810S. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in Biao 810S was only 69.80 % of that in 810S, but the activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme were 79.50 and 69.06 % higher than those of 810S, respectively, suggesting that the efficiency of photon energy utilization in Biao 810S was enhanced by reduction of thermal dissipation and increase of electron transfer rate to generate sufficient assimilation power for the dark reactions. Consequently, the increased activities of C4 photosynthetic enzymes lead to more effective fixation of CO2 and the synergistic effect of light and dark reactions contributed to the higher PN of Biao 810S. and L.-J. Ou ... [et al.].