Secondary plant metabolites (allelochemicals) play a major role in plant-insect interactions. Glucosinolates (GLS) and their degradation products from Brassica species are attractants and feeding stimulants for Brassicaceae specialist insects but are generally repellent and toxic for generalist herbivores. The impact of these compounds on crucifer specialist insects are well known but their effect on generalist predators is still not well documented. The influence of the prey's host plant on both development and reproduction of an aphidophagous beneficial, the hoverfly Episyrphus balteatus, was determined using the cabbage aphid, Brevicoryne brassicae (a specialist) and the peach aphid Myzus persicae (a generalist) reared on two crucifer plants, Brassica napus and Sinapis alba containing low and high GLS levels respectively.
The prey and its host plant differently influenced life history parameters of E. balteatus. The predator's rates of development and survival did not vary when it fed on the generalist aphid reared on different host plants. These rates decreased, however, when the predator fed on the specialist aphid reared on the host plant with high GLS content plant versus the host plant with lower GLS content. This aphid host plant combination also negatively affected hoverfly reproduction; lower fecundity was observed. As a result, the fitness of the hoverfly was strongly affected. This study illustrates the importance of tritrophic relations in pest management involving predators. The host plant of the prey can have a major influence on the potential of a biological agent to control herbivore species such as aphids.