We investigated the predatory potential and food preference of different life stages of Coccinella septempunctata L. for a nutritious aphid (mustard aphid, Lipaphis erysimi) and toxic aphid (cabbage aphid, Brevicoryne brassicae). We provided all the life stages of C. septempunctata with either L. erysimi or B. brassicae and found that the second, third and fourth instar larvae and adult females of this predator consumed daily greater numbers of L. erysimi. However, the first instar larvae and adult males consumed similar numbers of both of these aphids. In choice condition, each larva, adult males and females were each provided separately with a mixed aphid diet in three proportions (i.e. low: high, equal: equal and high: low densities of L. erysimi: B. brassicae). We hypothesized that life stages of C. septempunctata will prefer L. erysimi regardless of its proportions. Laboratory experiments supported this hypothesis only at the adult level in terms of high values of β and C preference indices. However, it rejects this hypothesis at the larval level, as larvae preferred B. brassicae when provided with certain combinations and showed no preference in a few combinations. We infer that mixtures of nutritious and toxic aphids may enable this ladybird to overcome any probable nutritional deficiency and/or reduce the toxicity of a toxic diet, especially for the larvae. Results of the treatment in which a high proportion of B. brassicae were consumed along with fewer L. erysimi indicates that a mixed diet could be better for the development of immature stages of C. septempunctata., Mushtaq A. Guroo, Ahmad Pervez, Kuldeep Srivastava, Rakesh K. Gupta., and Obsahuje bibliografii
Secondary plant metabolites (allelochemicals) play a major role in plant-insect interactions. Glucosinolates (GLS) and their degradation products from Brassica species are attractants and feeding stimulants for Brassicaceae specialist insects but are generally repellent and toxic for generalist herbivores. The impact of these compounds on crucifer specialist insects are well known but their effect on generalist predators is still not well documented. The influence of the prey's host plant on both development and reproduction of an aphidophagous beneficial, the hoverfly Episyrphus balteatus, was determined using the cabbage aphid, Brevicoryne brassicae (a specialist) and the peach aphid Myzus persicae (a generalist) reared on two crucifer plants, Brassica napus and Sinapis alba containing low and high GLS levels respectively.
The prey and its host plant differently influenced life history parameters of E. balteatus. The predator's rates of development and survival did not vary when it fed on the generalist aphid reared on different host plants. These rates decreased, however, when the predator fed on the specialist aphid reared on the host plant with high GLS content plant versus the host plant with lower GLS content. This aphid host plant combination also negatively affected hoverfly reproduction; lower fecundity was observed. As a result, the fitness of the hoverfly was strongly affected. This study illustrates the importance of tritrophic relations in pest management involving predators. The host plant of the prey can have a major influence on the potential of a biological agent to control herbivore species such as aphids.
The systemic effects of phytoecdysteroids were investigated by applying tested compounds to the roots of the rape plants. Evaluation of the effects was based on mortality, longevity, rate of development and fecundity of the cabbage aphid (Brevicoryne brassicae L., Sternorrhyncha: Aphididae) feeding on the shoot of the treated plants. The major ecdysteroid compounds tested were natural products isolated from a medicinal plant Leuzea carthamoides DC (Willd.) Iljin (Asteraceae): 20-hydroxyecdysone (20E), ajugasterone C (ajuC) and polypodine B (polyB). The compounds were tested in two concentrations (0.07 and 0.007 mg/ml) in water. In addition, we have also investigated the systemic effects of a special Lc-Ecdy 8 fraction isolated from L. carthamoides, which contained 20E, ajuC and polyB and at least six other minor compounds in addition to the above indicated ecdysteroids. HPLC analysis of the Lc-Ecdy 8 fraction indicated the presence of makisterone A and inokosterone in minor quantities. It appeared that all ecdysteroid compounds tested, with the exception of the most common, 20E, decreased the fecundity of cabbage aphids which fed on the contaminated rape plants. The mortality of larvae and adults significantly increased on plants treated with the Lc-Ecdy 8 fraction, and with ajuC or polyB compounds containing structural substituents in rather unusual positions. The most common phytoecdysteroid, 20E, with the typical and characteristic ecdysteroid structure, was the best tolerated of all phytoecdysteroids tested.
Diaeretiella rapae MacIntosh (Hymenoptera: Aphidiidae) is one of the most common and successful parasitoids of the cabbage aphid. The functional response of D. rapae towards cabbage aphids was examined in laboratory studies at three constant temperatures, 17°C, 25°C and 30°C. D. rapae exhibited a type II functional response at all three temperatures. The search rates were uninfluenced by temperature whereas handling times differed significantly between 17°C and 25°C, and between 17°C and 30°C, but not between 25°C and 30°C. This study is a first-step in the evaluation of the effectiveness of D. rapae as a biocontrol agent of Brevicoryne brassicae at different temperatures., Hamid R.S.Moayeri ... [et al.]., and Obsahuje seznam literarurty
A suitable host provides, at least, the minimum nutritional and physiological conditions for the development of the immature stages of a parasitoid. Host quality may influence the developmental time, mortality rate, longevity and fecundity of parasitoids. This work evaluates the suitability and quality of Aphis gossypii Glover, Brevicoryne brassicae (Linné), Myzus persicae (Sulzer), Rhopalosiphum maidis (Fitch) and Schizaphis graminum (Rondani) as hosts for Aphidius colemani Viereck. Twenty second-instar nymphs of each aphid species were exposed to parasitism for one hour, and then kept in a climatic chamber at 22 ± 1°C, 70 ± 10% RH and a 12 h photophase. The aphid B. brassicae was unsuitable for the development of A. colemani. The different aphid host species varied in size: M. persicae > (R. maidis = S. graminum) > A. gossypii. Parasitoid fitness decreased accordingly when reared on (M. persicae = R. maidis) > S. graminum > A. gossypii. Large hosts seem to be better than small hosts based on parasitoid size. Egg load of A. colemani was related probably more on the ability of the parasitoid larva to obtain nutritional resources from the different host species than on host size.