Využitie kombinovaného systému na báze pyrolýzy biomasy, resp. triedeného komunálneho odpadu, v kombinácii s čistením exhalátov za pomoci elektrického výboja, poskytuje zaujímavú možnosť znižovania skleníkotvorného CO2 a súčasne rozvoja niektorých foriem obnoviteľných zdrojov energie. Testovaný pilotný systém z hľadiska veľkosti zodpovedá približne potrebám bežne stavaných rodinných domov., Marcela Morvová., and Obsahuje bibliografii
Ian W.H. Parry., Popsáno podle obálky, Pod názvem: Center for Economic Research and Graduate Education. Faculty of Social Sciences. Charles University, and Obsahuje bibliografii a bibliografické odkazy
Earth’s climate has experienced notable changes during the past 50-70 years when global surface temperature has risen by 0.8°C during the 20th century. This was a consequence of the rise in the concentration of biogenic gases (carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and ozone) in the atmosphere that contribute, along with water vapor, to the so-called ‘greenhouse effect’. Most of the emissions of greenhouse gases have been, and still are, the product of human activities, namely, the excessive use of fossil energy, deforestations in the humid tropics with associated poor land use-management, and wide-scale degradation of soils under crop cultivation and animal/pasture ecosystems. General Circulation Models predict that atmospheric CO2 concentration will probably reach 700 μmol(CO2) mol-1. This can result in rise of Earth’s temperature from 1.5 to over 5°C by the end of this century. This may instigate 0.60-1.0 m rise in sea level, with impacts on coastal lowlands across continents. Crop modeling predicts significant changes in agricultural ecosystems. The mid- and
high-latitude regions might reap the benefits of warming and CO2 fertilization effects via increasing total production and yield of C3 plants coupled with greater water-use efficiencies. The tropical/subtropical regions will probably suffer the worst impacts of global climate changes. These impacts include wide-scale socioeconomic changes, such as degradation and losses of natural resources, low agricultural production, and lower crop yields, increased risks of hunger, and above all waves of human migration and dislocation. Due to inherent cassava tolerance to heat, water stress, and poor soils, this crop is highly adaptable to warming climate. Such a trait should enhance its role in food security in the tropics and subtropics., M. A. El-Sharkawy., and Obsahuje bibliografii
During the last few decades the tree line has shifted upward on Mediterranean mountains. This has resulted in a decrease in the area of the sub-alpine prairie habitat and an increase in the threat to strictly orophilous moths that occur there. This also occurred on the Pollino Massif due to the increase in temperature and decrease in rainfall in Southern Italy. We found that a number of moths present in the alpine prairie at 2000 m appear to be absent from similar habitats at 1500-1700 m. Some of these species are thought to be at the lower latitude margin of their range. Among them, Pareulype berberata and Entephria flavicinctata are estimated to be the most threatened because their populations are isolated and seem to be small in size. The tops of these mountains are inhabited by specialized moth communities, which are strikingly different from those at lower altitudes on the same massif further south. The majority of the species recorded in the sub-alpine prairies studied occur most frequently and abundantly in the core area of the Pollino Massif. Species and, as a consequence, communities found at high altitudes are highly vulnerable to climate warming, and need further monitoring.
The rose grain aphid, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) is one of the three most important cereal aphid species in Europe. High temperature is detrimental for the survival of this species. Detailed experiments were conducted on the effect of high temperature (27, 28, 29, 30, 31, 31.5, 32.5, 33 and 34°C), period of exposure (2, 3, 4, 6 and 8 h per day for 1, 2, 4, 6 days) and developmental stage (2nd, 3rd, 4th instar nymph and adult) on the survival of the aphid. The results show that all three factors significantly affect survival. Temperatures over 29°C for 8 h significantly reduced survival, which decreased generally as the temperature increased. The survival was inversely related to the period of exposure. Exposing aphids to 32.5°C for 4 h or longer significantly reduced survival. Mature aphids had a lower tolerance of high temperatures than nymphs. Periods of high temperature experienced by 4th instar and adult aphids can greatly affect their survival. The value of these results for forecasting and determining control thresholds, the effect of global warming on cereal aphid abundance and the dropping off behaviour of the aphids are discussed.
Zástupci rodu Compsopogon (Rhodophyta) jsou tropické druhy řas. Ve střední Evropě se nacházejí v akváriích a v tocích, ovlivněných vypouštěním oteplených odpadních vod. Druh Compsopogon aeruginosus byl nalezen v rakouském přítoku řeky Dyje Pulkavě. Od prvního nálezu v roce 2007 se tato ruducha šířila i do řeky Dyje. V červnu 2012 byla nalezena ve Skryjském potoce, který přivádí odpadní vody z jaderné elektrárny Dukovany. Odpadní voda v době nálezu měla průměrnou roční teplotu 22,8°C, pH 8,5., The representatives of the genus Compsopogon (Rhodophyta) are basically tropical algae. In Central Europe, they are only found in aquaria and in water bodies affected by thermal effluents. The species Compsopogon aeruginosus was found in the Pulkau River (Austria), a tributary of the Thaya. After the first observation of this species in 2007, it also expanded to the Thaya. In June 2012 it was found in the Skryjský stream which is fed waste water from the Dukovany nuclear power station. At the time of this finding, the waste water had an annual average temperature of 22.8°C, pH 8.5., and Pavel Sedláček, Zdeňka Žáková, Hana Mlejnková.